Kdm7a expression is spatiotemporally regulated in developing Xenopus laevis embryos, and its overexpression influences late retinal development.
demethylase
epigenetics
expression
eye
histone
neuron
Journal
Developmental dynamics : an official publication of the American Association of Anatomists
ISSN: 1097-0177
Titre abrégé: Dev Dyn
Pays: United States
ID NLM: 9201927
Informations de publication
Date de publication:
01 Nov 2023
01 Nov 2023
Historique:
revised:
26
09
2023
received:
30
06
2023
accepted:
02
10
2023
medline:
1
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
aheadofprint
Résumé
Post-translational histone modifications are among the most common epigenetic modifications that orchestrate gene expression, playing a pivotal role during embryonic development and in various pathological conditions. Among histone lysine demethylases, KDM7A, also known as KIAA1718 or JHDM1D, catalyzes the demethylation of H3K9me1/2 and H3K27me1/2, leading to transcriptional regulation. Previous data suggest that KDM7A plays a central role in several biological processes, including cell proliferation, commitment, differentiation, apoptosis, and maintenance. However, information on the expression pattern of KDM7A in whole organisms is limited, and its functional role is still unclear. In Xenopus development, kdm7a is expressed early, undergoing spatiotemporal regulation in various organs and tissues, including the central nervous system and the eye. Focusing on retinal development, we found that kdm7a overexpression does not affect the expression of genes critically involved in early neural development and eye-field specification, whereas unbalances the distribution of neural cell subtypes in the mature retina by disfavoring the development of ganglion cells while promoting that of horizontal cells. Kdm7a is dynamically expressed during embryonic development, and its overexpression influences late retinal development, suggesting a potential involvement in the molecular machinery regulating the spatiotemporally ordered generation of retinal neuronal subtypes.
Sections du résumé
BACKGROUND
BACKGROUND
Post-translational histone modifications are among the most common epigenetic modifications that orchestrate gene expression, playing a pivotal role during embryonic development and in various pathological conditions. Among histone lysine demethylases, KDM7A, also known as KIAA1718 or JHDM1D, catalyzes the demethylation of H3K9me1/2 and H3K27me1/2, leading to transcriptional regulation. Previous data suggest that KDM7A plays a central role in several biological processes, including cell proliferation, commitment, differentiation, apoptosis, and maintenance. However, information on the expression pattern of KDM7A in whole organisms is limited, and its functional role is still unclear.
RESULTS
RESULTS
In Xenopus development, kdm7a is expressed early, undergoing spatiotemporal regulation in various organs and tissues, including the central nervous system and the eye. Focusing on retinal development, we found that kdm7a overexpression does not affect the expression of genes critically involved in early neural development and eye-field specification, whereas unbalances the distribution of neural cell subtypes in the mature retina by disfavoring the development of ganglion cells while promoting that of horizontal cells.
CONCLUSIONS
CONCLUSIONS
Kdm7a is dynamically expressed during embryonic development, and its overexpression influences late retinal development, suggesting a potential involvement in the molecular machinery regulating the spatiotemporally ordered generation of retinal neuronal subtypes.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University of Pisa
Informations de copyright
© 2023 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
Références
Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219(2):243-250. doi:10.1002/jcp.21678
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018;19(7):436-450. doi:10.1038/s41580-018-0008-z
Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics. 2019;11(1):174. doi:10.1186/s13148-019-0776-0
Huang C, Xiang Y, Wang Y, et al. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 2010;20(2):154-165. doi:10.1038/cr.2010.5
Yokoyama A, Okuno Y, Chikanishi T, et al. KIAA1718 is a histone demethylase that erases repressive histone methyl marks. Genes Cells. 2010;15(8):867-873. doi:10.1111/j.1365-2443.2010.01424.x
Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24(5):432-437. doi:10.1101/gad.1864410
Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol. 2010;17(1):38-43. doi:10.1038/nsmb.1753
Rissi VB, Glanzner WG, De Macedo MP, et al. The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos. Epigenetics. 2019;14(11):1088-1101. doi:10.1080/15592294.2019.1633864
Huang C, Chen J, Zhang T, et al. The dual histone demethylase KDM7A promotes neural induction in early chick embryos. Dev Dyn. 2010;239(12):3350-3357. doi:10.1002/dvdy.22465
Swaminathan J, Maegawa S, Shaik S, et al. Cross-talk between histone methyltransferases and demethylases regulate REST transcription during neurogenesis. Front Oncol. 2022;12:855167. doi:10.3389/fonc.2022.855167
Meng Z, Liu Y, Wang J, et al. Histone demethylase KDM7A is required for stem cell maintenance and apoptosis inhibition in breast cancer. J Cell Physiol. 2020;235(2):932-943. doi:10.1002/jcp.29008
Giudetti G, Giannaccini M, Biasci D, et al. Characterization of the Rx1-dependent transcriptome during early retinal development. Dev Dyn. 2014;243(10):1352-1361. doi:10.1002/dvdy.24145
Blackshaw S, Harpavat S, Trimarchi J, et al. Genomic analysis of mouse retinal development. PLoS Biol. 2004;2(9):E247. doi:10.1371/journal.pbio.0020247
Andreazzoli M. Molecular regulation of vertebrate retina cell fate. Birth Defects Res C Embryo Today. 2009;87(3):284-295. doi:10.1002/bdrc.20161
Shin JY, Son J, Kim WS, Gwak J, Ju BG. Jmjd6a regulates GSK3beta RNA splicing in Xenopus laevis eye development. PloS One. 2019;14(7):e0219800. doi:10.1371/journal.pone.0219800
Watanabe S, Murakami A. Regulation of retinal development via the epigenetic modification of histone H3. Adv Exp Med Biol. 2016;854:635-641. doi:10.1007/978-3-319-17121-0_84
Umutoni D, Iwagawa T, Baba Y, et al. H3K27me3 demethylase UTX regulates the differentiation of a subset of bipolar cells in the mouse retina. Genes Cells. 2020;25(6):402-412. doi:10.1111/gtc.12767
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/beta-catenin signaling. Development. 2013;140(14):2867-2878. doi:10.1242/dev.088096
Raeisossadati R, Movio MI, Walter LT, Takada SH, Del Debbio CB, Kihara AH. Small molecule GSK-J1 affects differentiation of specific neuronal subtypes in developing rat retina. Mol Neurobiol. 2019;56(3):1972-1983. doi:10.1007/s12035-018-1197-3
Iida A, Iwagawa T, Kuribayashi H, et al. Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proc Natl Acad Sci U S A. 2014;111(10):3751-3756. doi:10.1073/pnas.1311480111
Katoh K, Yamazaki R, Onishi A, Sanuki R, Furukawa T. G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells. J Neurosci. 2012;32(49):17658-17670. doi:10.1523/JNEUROSCI.1869-12.2012
Zhang J, Roberts JM, Chang F, Schwakopf J, Vetter ML. Jarid2 promotes temporal progression of retinal progenitors via repression of Foxp1. Cell Rep. 2023;42(4):112416. doi:10.1016/j.celrep.2023.112416
Schneider TD, Arteaga-Salas JM, Mentele E, et al. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome. PLoS One. 2011;6(7):e22548. doi:10.1371/journal.pone.0022548
Newport J, Kirschner M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell. 1982;30(3):687-696. doi:10.1016/0092-8674(82)90273-2
Glanzner WG, Rissi VB, de Macedo MP, et al. Histone 3 lysine 4, 9, and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol Reprod. 2018;98(6):742-751. doi:10.1093/biolre/ioy054
Yang X, Wang G, Wang Y, et al. Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPalpha and canonical Wnt signaling. J Cell Mol Med. 2019;23(3):2149-2162. doi:10.1111/jcmm.14126
Sasai Y. Roles of Sox factors in neural determination: conserved signaling in evolution? Int J Dev Biol. 2001;45(1):321-326.
Nakata K, Nagai T, Aruga J, Mikoshiba K. Xenopus Zic family and its role in neural and neural crest development. Mech Dev. 1998;75(1-2):43-51. doi:10.1016/s0925-4773(98)00073-2
Giannaccini M, Giudetti G, Biasci D, et al. Brief report: Rx1 defines retinal precursor identity by repressing alternative fates through the activation of TLE2 and Hes4. Stem Cells. 2013;31(12):2842-2847. doi:10.1002/stem.1530
Vernon AE, Philpott A. The developmental expression of cell cycle regulators in Xenopus laevis. Gene Expr Patterns. 2003;3(2):179-192. doi:10.1016/s1567-133x(03)00006-1
Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene delta. Nature. 1995;375(6534):761-766. doi:10.1038/375761a0
Wilson SI, Edlund T. Neural induction: toward a unifying mechanism. Nat Neurosci. 2001;4:1161-1168. https://doi.org10.1038/nn747
Messina A, Lan L, Incitti T, et al. Noggin-mediated retinal induction reveals a novel interplay between bone morphogenetic protein inhibition, transforming growth factor beta, and sonic hedgehog signaling. Stem Cells. 2015;33(8):2496-2508. https://doi.org10.1002/stem.2043
D'Autilia S, Broccoli V, Barsacchi G, Andreazzoli M. Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate. Proc Natl Acad Sci U S A. 2010;107(14):6352-6357. doi:10.1073/pnas.1000854107
Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034
Mughal BB, Leemans M, Spirhanzlova P, Demeneix B, Fini JB. Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis. Sci Rep. 2018;8(1):496. doi:10.1038/s41598-017-18684-1
Kanekar S, Perron M, Dorsky R, et al. Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron. 1997;19(5):981-994. doi:10.1016/s0896-6273(00)80391-8
Zuber ME, Perron M, Philpott A, Bang A, Harris WA. Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell. 1999;98(3):341-352. doi:10.1016/s0092-8674(00)81963-7
Viczian AS, Solessio EC, Lyou Y, Zuber ME. Generation of functional eyes from pluripotent cells. PLoS Biol. 2009;7(8):e1000174. doi:10.1371/journal.pbio.1000174