Whole-genome SNP genotyping unveils ancestral and recent introgression in wild and domestic goats.

Capra hircus Capra ibex D-statistics autosomal DNA evolutionary genomics phylogeny

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
01 Nov 2023
Historique:
revised: 04 10 2023
received: 26 07 2022
accepted: 16 10 2023
medline: 1 11 2023
pubmed: 1 11 2023
entrez: 1 11 2023
Statut: aheadofprint

Résumé

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.

Identifiants

pubmed: 37909668
doi: 10.1111/mec.17190
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutscher Akademischer Austauschdienst
ID : BI-DE/20-21-003
Organisme : Deutscher Akademischer Austauschdienst
ID : ID-57418683
Organisme : Deutscher Akademischer Austauschdienst
ID : ID-57514909
Organisme : Javna Agencija za Raziskovalno Dejavnost RS
ID : J4-1768
Organisme : Javna Agencija za Raziskovalno Dejavnost RS
ID : P4-0220
Organisme : Ministry of Science and Higher Education of the Russian Federation
ID : 075-15-2021-1037

Informations de copyright

© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Références

Acevedo, P., & Real, R. (2011). Biogeographical differences between the two Capra pyrenaica subspecies, C. p. victoriae and C. p. hispanica, inhabiting the Iberian Peninsula: Implications for conservation. Ecological Modelling, 222(3), 814-823. https://doi.org/10.1016/j.ecolmodel.2010.10.006
Ahmad, S., & Nabi, G. (2022). Pakistan's markhor population in decline. Science, 375(6577), 153. https://doi.org/10.1126/science.abn0745
Alasaad, S., Fickel, J., Rossi, L., Sarasa, M., Benítez-Camacho, B., Granados, J. E., & Soriguer, R. C. (2012). Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: A case study from Iberian ibex × domestic goat in southern Spain. Acta Veterinaria Scandinavica, 54(1), 1-6. https://doi.org/10.1186/1751-0147-54-56
Alberto, F. J., Boyer, F., Orozco-Terwengel, P., Streeter, I., Servin, B., De Villemereuil, P., Benjelloun, B., Librado, P., Biscarini, F., Colli, L., Barbato, M., Zamani, W., Alberti, A., Engelen, S., Stella, A., Joost, S., Ajmone-Marsan, P., Negrini, R., Orlando, L., … Pompanon, F. (2018). Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 9(1), 813. https://doi.org/10.1038/s41467-018-03206-y
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109
Bar-Gal, G. K., Smith, P., Tchernov, E., Greenblatt, C., Ducos, P., Gardeisen, A., & Horwitz, L. K. (2002). Genetic evidence for the origin of the agrimi goat (Capra aegagrus cretica). Journal of Zoology, 256(3), 369-377. https://doi.org/10.1017/S0952836902000407
Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P., & Ramachandran, S. (2016). Pong: Fast analysis and visualization of latent clusters in population genetic data. Bioinformatics, 32(18), 2817-2823. https://doi.org/10.1093/bioinformatics/btw327
Bickhart, D. M., Rosen, B. D., Koren, S., Sayre, B. L., Hastie, A. R., Chan, S., Lee, J., Lam, E. T., Liachko, I., Sullivan, S. T., Burton, J. N., Huson, H. J., Nystrom, J. C., Kelley, C. M., Hutchison, J. L., Zhou, Y., Sun, J., Crisà, A., Ponce de León, F. A., … Smith, T. P. (2017). Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 49(4), 643-650. https://doi.org/10.1038/ng.3802
Burren, A., Neuditschko, M., Signer-Hasler, H., Frischknecht, M., Reber, I., Menzi, F., Drögemüller, C., & Flury, C. (2016). Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds. Animal Genetics, 47(6), 727-739. https://doi.org/10.1111/age.12476
Cao, Y. H., Xu, S. S., Shen, M., Chen, Z. H., Gao, L., Lv, F. H., Xie, X. L., Wang, X. H., Yang, H., Liu, C. B., Zhou, P., Wan, P. C., Zhang, Y. S., Yang, J. Q., Pi, W. H., Hehua, E., Berry, D. P., Barbato, M., Esmailizadeh, A., … Li, M. H. (2021). Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Molecular Biology and Evolution, 38(3), 838-855. https://doi.org/10.1093/molbev/msaa236
Cardoso, T. F., Luigi-Sierra, M. G., Castelló, A., Cabrera, B., Noce, A., Mármol-Sánchez, E., García-González, R., Fernández-Arias, A., Alabart, J. L., López-Olvera, J. R., Mentaberre, G., Granados-Torres, J. E., Cardells-Peris, J., Molina, A., Sànchez, A., Clop, A., & Amills, M. (2021). Assessing the levels of intraspecific admixture and interspecific hybridization in Iberian wild goats (Capra pyrenaica). Evolutionary Applications, 14(11), 2618-2634. https://doi.org/10.1111/eva.13299
Castelló, J. R. (2016). Bovids of the world: Antelopes, gazelles, cattle, goats, sheep, and relatives. Angewandte Chemie, 6(11), 951-952.
Chebii, V. J., Oyola, S. O., Kotze, A., Entfellner, J. B. D., Musembi Mutuku, J., & Agaba, M. (2020). Genome-wide analysis of Nubian ibex reveals candidate positively selected genes that contribute to its adaptation to the desert environment. Animals, 10(11), 2181. https://doi.org/10.3390/ani10112181
Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., Su, W., Liu, G., Li, Q., Fu, W., Pan, X., Liu, C., Yang, J., Zhang, C., Yin, Y., … Wang, W. (2019). Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 364(6446), eaav6202. https://doi.org/10.1126/science.aav6202
Chen, N., Cai, Y., Chen, Q., Li, R., Wang, K., Huang, Y., Hu, S., Huang, S., Zhang, H., Zheng, Z., Song, W., Ma, Z., Ma, Y., Dang, R., Zhang, Z., Xu, L., Jia, Y., Liu, S., Yue, X., … Lei, C. (2018). Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9(1), 1-13. https://doi.org/10.1038/s41467-018-04737-0
Colli, L., Milanesi, M., Talenti, A., Bertolini, F., Chen, M., Crisà, A., Daly, K. G., Del Corvo, M., Guldbrandtsen, B., Lenstra, J. A., Rosen, B. D., Vajana, E., Catillo, G., Joost, S., Nicolazzi, E. L., Rochat, E., Rothschild, M. F., Servin, B., Sonstegard, T. S., … Stella, A. (2018). Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genetics Selection Evolution, 50(1), 1-20. https://doi.org/10.1186/s12711-018-0422-x
Cubric-Curik, V., Novosel, D., Brajkovic, V., Rota Stabelli, O., Krebs, S., Sölkner, J., Šalamon, D., Ristov, S., Berger, B., Trivizaki, S., Bizelis, I., Ferenčaković, M., Rothammer, S., Kunz, E., Simčič, M., Dovč, P., Bunevski, G., Bytyqi, H., Marković, B., … Medugorac, I. (2021). Large scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression. Evolutionary Applications, 15, 663-678. https://doi.org/10.1111/eva.13315
Daly, K. G., Arbuckle, B. S., Rossi, C., Mattiangeli, V., Lawlor, P. A., Mashkour, M., Sauer, E., Lesur, J., Atici, L., Erek, C. M., & Bradley, D. G. (2022). A novel lineage of the Capra genus discovered in the Taurus Mountains of Turkey using ancient genomics. eLife, 11, e82984. https://doi.org/10.7554/eLife.82984
Deniskova, T. E., Dotsev, A. V., Selionova, M. I., Reyer, H., Sölkner, J., Fornara, M. S., Aybazov, A. M. M., Wimmers, K., Brem, G., & Zinovieva, N. A. (2021). SNP-based genotyping provides insight into the west Asian origin of Russian local goats. Frontiers in Genetics, 12, 708740. https://doi.org/10.3389/fgene.2021.708740
Denoyelle, L., Talouarn, E., Bardou, P., Colli, L., Alberti, A., Danchin, C., Del Corvo, M., Engelen, S., Orvain, C., Palhière, I., Rupp, R., Sarry, J., Salavati, M., Amills, M., Clark, E., Crepaldi, P., Faraut, T., Masiga, C. W., Pompanon, F., … Nash, O. (2021). VarGoats project: A dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics Selection Evolution, 53(1), 86. https://doi.org/10.1186/s12711-021-00659-6
Dotsev, A. V., Rodionov, A. N., Kharzinova, V. R., Petrov, S. N., Medvedev, D. G., Bagirov, V. A., Brem, G., & Zinovieva, N. A. (2021). An assessment of applicability of snp chip developed for domestic goats in genetic studies of Caucasian tur (Capra caucasica). Diversity, 13(7), 312. https://doi.org/10.3390/d13070312
El Moutchou, N., González, A., Chentouf, M., Lairini, K., Muñoz-Mejías, M. E., & Rodero, E. (2018). Exploring the genetic diversity and relationships between Spanish and Moroccan goats using microsatellite markers. Small Ruminant Research, 165, 115-123. https://doi.org/10.1016/j.smallrumres.2018.04.003
Fitak, R. R. (2021). OptM: Estimating the optimal number of migration edges on population trees using Treemix. Biology Methods & Protocols, 6(1), bpab017. https://doi.org/10.1093/biomethods/bpab017
Giacometti, M., Roganti, R., De Tann, D., Stahlberger-Saitbekova, N., & Obexer-Ruff, G. (2004). Alpine ibex Capra ibex ibex x domestic goat C. aegagrus domestica hybrids in a restricted area of southern Switzerland. Wildlife Biology, 10(2), 137-143. https://doi.org/10.2981/wlb.2004.018
Gómez-Rubio, V. (2017). ggplot2-Elegant graphics for data analysis (2nd Edition). Journal of Statistical Software, 77, Book Review 2. https://doi.org/10.18637/jss.v077.b02
Grossen, C., Guillaume, F., Keller, L. F., & Croll, D. (2020). Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nature Communications, 11(1), 1001. https://doi.org/10.1038/s41467-020-14803-1
Grossen, C., Keller, L., Biebach, I., Zhang, W., Tosser-Klopp, G., Ajmone, P., Amills, M., Boitard, S., Chen, W., Cheng, S., Dong, Y., Faraut, T., Faruque, O., Heuven, H., Jinshan, Z., Jun, L., Lenstra, H., Li, X., Liu, X., … Croll, D. (2014). Introgression from domestic goat generated variation at the major histocompatibility complex of alpine ibex. PLoS Genetics, 10(6), e1004438. https://doi.org/10.1371/journal.pgen.1004438
Groves, C., & Grubb, P. (2011). Ungulate taxonomy (1st ed.). The Johns Hopkins University Press.
Hammer, S. E., Schwammer, H. M., & Suchentrunk, F. (2008). Evidence for introgressive hybridization of captive markhor (Capra falconeri) with domestic goat: Cautions for reintroduction. Biochemical Genetics, 46(3-4), 216-226. https://doi.org/10.1007/s10528-008-9145-y
Hassan, L. M. A., Arends, D., Rahmatalla, S. A., Reissmann, M., Reyer, H., Wimmers, K., Abukashawa, S. M. A., & Brockmann, G. A. (2018). Genetic diversity of Nubian ibex in comparison to other ibex and domesticated goat species. European Journal of Wildlife Research, 64(5), 52. https://doi.org/10.1007/s10344-018-1212-z
Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254-267. https://doi.org/10.1093/molbev/msj030
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
Li, C., Wu, Y., Chen, B., Cai, Y., Guo, J., Leonard, A. S., Kalds, P., Zhou, S., Zhang, J., Zhou, P., Gan, S., Jia, T., Pu, T., Suo, L., Li, Y., Zhang, K., Li, L., Purevdorj, M., Wang, X., … Wang, X. (2022). Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Molecular Biology and Evolution, 39(12), msac253. https://doi.org/10.1093/molbev/msac253
Luikart, G., Gielly, L., Excoffier, L., Vigne, J. D., Bouvet, J., & Taberlet, P. (2001). Multiple maternal origins and weak phylogeographic structure in domestic goats. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5927-5932. https://doi.org/10.1073/pnas.091591198
Malinsky, M., Matschiner, M., & Svardal, H. (2021). Dsuite - fast D-statistics and related admixture evidence from VCF files. Molecular Ecology Resources, 21(2), 584-595. https://doi.org/10.1111/1755-0998.13265
Manceau, V., Després, L., Bouvet, J., & Taberlet, P. (1999). Systematics of the genus Capra inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 13(3), 504-510. https://doi.org/10.1006/mpev.1999.0688
Manunza, A., Noce, A., Serradilla, J. M., Goyache, F., Martínez, A., Capote, J., Delgado, J. V., Jordana, J., Muñoz, E., Molina, A., Landi, V., Pons, A., Balteanu, V., Traoré, A., Vidilla, M., Sánchez-Rodríguez, M., Sànchez, A., Cardoso, T. F., & Amills, M. (2016). A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds. Genetics Selection Evolution, 48(1), 1-9. https://doi.org/10.1186/s12711-016-0229-6
Masseti, M. (2009). The wild goats Capra aegagrus Erxleben, 1777 of the Mediterranean Sea and the Eastern Atlantic Ocean islands. Mammal Review, 39(2), 141-157. https://doi.org/10.1111/j.1365-2907.2009.00141.x
Medugorac, I., Graf, A., Grohs, C., Rothammer, S., Zagdsuren, Y., Gladyr, E., Zinovieva, N., Barbieri, J., Seichter, D., Russ, I., Eggen, A., Hellenthal, G., Brem, G., Blum, H., Krebs, S., & Capitan, A. (2017). Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nature Genetics, 49(3), 470-475. https://doi.org/10.1038/ng.3775
Michel, S., Michel, T. R., Saidov, A., Karimov, K., Alidodov, M., & Kholmatov, I. (2014). Population status of Heptner's markhor Capra falconeri heptneri in Tajikistan: Challenges for conservation. Oryx, 755, 506-513. https://doi.org/10.1017/S0030605313000860
Palamara, P. F. (2016). ARGON: Fast, whole-genome simulation of the discrete time Wright-fisher process. Bioinformatics, 32(19), 3032-3034. https://doi.org/10.1093/bioinformatics/btw355
Papachristou, D., Koutsouli, P., Laliotis, G. P., Kunz, E., Upadhyay, M., Seichter, D., Russ, I., Gjoko, B., Kostaras, N., Bizelis, I., & Medugorac, I. (2020). Genomic diversity and population structure of the indigenous Greek and Cypriot cattle populations. Genetics Selection Evolution, 52(1), 43. https://doi.org/10.1186/s12711-020-00560-8
Parrini, F., Cain, J. W., & Krausman, P. R. (2009). Capra ibex (Artiodactyla: Bovidae). Mammalian Species, 830(December), 1-12. https://doi.org/10.1644/830.1
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., & Reich, D. (2012). Ancient admixture in human history. Genetics, 192(3), 1065-1093. https://doi.org/10.1534/genetics.112.145037
Pereira, F., Queirós, S., Gusmão, L., Nijman, I. J., Cuppen, E., Lenstra, J. A., Consortium, E., Davis, S. J. M., Nejmeddine, F., & Amorim, A. (2009). Tracing the history of goat pastoralism: New clues from mitochondrial and y chromosome DNA in North Africa. Molecular Biology and Evolution, 26(12), 2765-2773. https://doi.org/10.1093/molbev/msp200
Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8(11), e1002967. https://doi.org/10.1371/journal.pgen.1002967
Pidancier, N., Jordan, S., Luikart, G., & Taberlet, P. (2006). Evolutionary history of the genus Capra (Mammalia, Artiodactyla): Discordance between mitochondrial DNA and Y-chromosome phylogenies. Molecular Phylogenetics and Evolution, 40(3), 739-749. https://doi.org/10.1016/j.ympev.2006.04.002
Pinhasi, R., Thomas, M. G., Hofreiter, M., Currat, M., & Burger, J. (2012). The genetic history of Europeans. Trends in Genetics, 28(10), 496-505. https://doi.org/10.1016/j.tig.2012.06.006
Pogorevc, N., Simčič, M., Khayatzadeh, N., Sölkner, J., Berger, B., Bojkovski, D., Zorc, M., Dovč, P., Medugorac, I., & Horvat, S. (2021). Post-genotyping optimization of dataset formation could affect genetic diversity parameters: An example of analyses with alpine goat breeds. BMC Genomics, 22(1), 1-23. https://doi.org/10.1186/s12864-021-07802-z
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rahim, M. (2016). Influence of environmental variables on distribution of wild goat (Capra aegagrus), in Iraq by Maxent. American Scientific Research Journal for Engineering, Technology, and Sciences, 18(1), 97-107.
Rahmatalla, S. A., Arends, D., Reissmann, M., Said Ahmed, A., Wimmers, K., Reyer, H., & Brockmann, G. A. (2017). Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits. BMC Genetics, 18(1), 1-10. https://doi.org/10.1186/s12863-017-0553-z
Reynolds, J., Weir, B. S., & Cockerham, C. C. (1983). Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics, 105(3), 767-779. https://doi.org/10.1093/genetics/105.3.767
Sauer, E. W., Pitskhelauri, K., Hopper, K., Tiliakou, A., Pickard, C., Lawrence, D., Diana, A., Kranioti, E., & Shupe, C. (2015). Northern outpost of the Caliphate: Maintaining military forces in a hostile environment (the Dariali Gorge in the Central Caucasus in Georgia). Antiquity, 89(346), 885-904. https://doi.org/10.15184/aqy.2015.80
Selionova, M. I., Aibazov, M. M., Mamontova, T. V., Petrov, S. N., Kharzinova, V. R., Arsen, D. V., & Zinovieva, N. A. (2020). 42 genetic differentiation of Russian goats and wild relatives based on microsatellite loci. Journal of Animal Science, 98(Supplement_4), 19-20. https://doi.org/10.1093/jas/skaa278.037
Skoglund, P., Malmström, H., Raghavan, M., Storå, J., Hall, P., Willerslev, E., Gilbert, M. T. P., Götherström, A., & Jakobsson, M. (2012). Origins and genetic legacy of neolithic farmers and hunter-gatherers in Europe. Science, 336(6080), 466-469. https://doi.org/10.1126/science.1216304
Stoffel, M. A., Esser, M., Kardos, M., Humble, E., Nichols, H., David, P., & Hoffman, J. I. (2016). inbreedR: An R package for the analysis of inbreeding based on genetic markers. Methods in Ecology and Evolution, 7(11), 1331-1339. https://doi.org/10.1111/2041-210X.12588
Tosser-Klopp, G., Bardou, P., Bouchez, O., Cabau, C., Crooijmans, R., Dong, Y., Donnadieu-Tonon, C., Eggen, A., Heuven, H. C. M., Jamli, S., Jiken, A. J., Klopp, C., Lawley, C. T., McEwan, J., Martin, P., Moreno, C. R., Mulsant, P., Nabihoudine, I., Pailhoux, E., … Zhao, S. (2014). Design and characterization of a 52K SNP chip for goats. PLoS One, 9(1), e86227. https://doi.org/10.1371/journal.pone.0086227
Ureña, I., Ersmark, E., Samaniego, J. A., Galindo-Pellicena, M. A., Crégut-Bonnoure, E., Bolívar, H., Gómez-Olivencia, A., Rios-Garaizar, J., Garate, D., Dalén, L., Arsuaga, J. L., & Valdiosera, C. E. (2018). Unraveling the genetic history of the European wild goats. Quaternary Science Reviews, 185, 189-198. https://doi.org/10.1016/j.quascirev.2018.01.017
VarGoats Consortium, Nijman, I. J., Rosen, B. D., Bardou, P., Faraut, T., Cumer, T., Daly, K. G., Zheng, Z., Cai, Y., Asadollahpour, H., Kul, B. Ç., Zhang, W., Guangxin, E., Ayin, A., Baird, H., Bakhtin, M., Bâlteanu, V. A., Barfield, D., Berger, B., … Lenstra, J. A. (2022). Geographical contrasts of Y-chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Molecular Ecology, 31, 4364-4380. https://doi.org/10.1111/mec.16579
Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science, 287(5461), 2254-2257. https://doi.org/10.1126/science.287.5461.2254
Zheng, Z., Wang, X., Li, M., Li, Y., Yang, Z., Wang, X., Pan, X., Gong, M., Zhang, Y., Guo, Y., Wang, Y., Liu, J., Cai, Y., Chen, Q., Okpeku, M., Okpeku, M., Okpeku, M., Colli, L., Cai, D., … Jiang, Y. (2020). The origin of domestication genes in goats. Science Advances, 6(21), eaaz5216. https://doi.org/10.1126/sciadv.aaz5216

Auteurs

Neža Pogorevc (N)

Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Martinsried/Planegg, Germany.

Arsen Dotsev (A)

L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia.

Maulik Upadhyay (M)

Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Martinsried/Planegg, Germany.

Edson Sandoval-Castellanos (E)

Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Martinsried/Planegg, Germany.

Elisabeth Hannemann (E)

Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Martinsried/Planegg, Germany.

Mojca Simčič (M)

Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.

Aglaia Antoniou (A)

Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Crete, Greece.

Dimitris Papachristou (D)

Laboratory of Animal Breeding and Husbandry, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece.

Panagiota Koutsouli (P)

Laboratory of Animal Breeding and Husbandry, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece.

Siham Rahmatalla (S)

Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany.

Gudrun Brockmann (G)

Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Berlin, Germany.

Johann Sölkner (J)

Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria.

Pamela Burger (P)

Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.

Petros Lymberakis (P)

Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece.

Nikos Poulakakis (N)

Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio, Greece.
Biology Department, School of Sciences and Engineering, University of Crete, Irakleio, Greece.
Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio, Greece.

Iosif Bizelis (I)

Laboratory of Animal Breeding and Husbandry, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece.

Natalia Zinovieva (N)

L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia.

Simon Horvat (S)

Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.

Ivica Medugorac (I)

Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Martinsried/Planegg, Germany.

Classifications MeSH