Epoxy resin for solidification/stabilization of soil contaminated with copper (II): Leaching, mechanical, and microstructural characterization.

Epoxy resin Heavy metal Leaching Solidification/stabilization Unconfined compressive strength

Journal

Environmental research
ISSN: 1096-0953
Titre abrégé: Environ Res
Pays: Netherlands
ID NLM: 0147621

Informations de publication

Date de publication:
01 Jan 2024
Historique:
received: 04 07 2023
revised: 20 10 2023
accepted: 24 10 2023
medline: 23 11 2023
pubmed: 2 11 2023
entrez: 1 11 2023
Statut: ppublish

Résumé

Among different types of heavy metal-contaminated soil, copper (Cu)-contaminated soil is very serious, and the Cu concentration in it is usually very high. It is common to solidify/stabilize Cu-contaminated soil using alkaline cementitious material. However, the remediated Cu-contaminated soil fails to meet the requirements of environmental safety and load-bearing capacity. This dilemma in the remediation of Cu-contaminated soil hinders the effective utilization of land resources. In this study, epoxy resin (EP) was utilized to solidify/stabilize Cu-contaminated soil due to its stable and rapid curing performance and excellent resistance to acid, alkali, and salt erosion. The mechanical properties, environmental effects, and curing mechanism of EP-cured Cu-contaminated soil were investigated. The results showed that the application of EP significantly enhanced the unconfined compressive strength (UCS), cohesion and internal friction angle of Cu-contaminated soil. All specimens met the UCS criterion specified by the United States Environmental Protection Agency (USPEA), namely no less than 0.35 MPa, which indicated that those EP-cured Cu-contaminated soil were qualified for practical engineering applications. According to the toxicity characteristic leaching procedure (TCLP), the application of EP enhanced the stability of Cu in Cu-contaminated soil. The leaching index of Cu ranged from 11 to 14. A high leaching index showed that the S/S treatment was safe and effective and the remediated Cu-contaminated soil satisfied the environmental requirement for heavy metals. This study confirmed the feasibility of utilizing EP in the solidification/stabilization (S/S) technology to convert high-concentration Cu-contaminated soil into secure and stable engineering materials. The remediation of Cu-contaminated soil by EP lays a solid foundation for the safe treatment and reuse of heavy metal-contaminated land resources.

Identifiants

pubmed: 37914008
pii: S0013-9351(23)02316-2
doi: 10.1016/j.envres.2023.117512
pii:
doi:

Substances chimiques

Copper 789U1901C5
Epoxy Resins 0
Soil 0
Soil Pollutants 0
Metals, Heavy 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

117512

Informations de copyright

Copyright © 2023 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Qiang Ma (Q)

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China. Electronic address: maqiang927@163.com.

Jingjie Lei (J)

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China. Electronic address: kaleslw@163.com.

Jun He (J)

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China. Electronic address: hjunas@163.com.

Zhi Chen (Z)

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China. Electronic address: chenzhi1988420@126.com.

Wentao Li (W)

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China. Electronic address: wli20201027@hbut.edu.cn.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH