The neglected roles of adjacent natural ecosystems in maintaining bacterial diversity in agroecosystems.
agricultural systems
bacterial diversity
biodiversity generation
biodiversity patterns
community assembly
community completeness
species pool effects
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
02 Nov 2023
02 Nov 2023
Historique:
revised:
05
10
2023
received:
12
07
2023
accepted:
09
10
2023
medline:
2
11
2023
pubmed:
2
11
2023
entrez:
2
11
2023
Statut:
aheadofprint
Résumé
A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e16996Subventions
Organisme : National Key Research and Development Program of China
ID : 2021YFD1900500
Organisme : National Natural Science Foundation of China
ID : 41830755
Organisme : National Natural Science Foundation of China
ID : 42077222
Organisme : National Science Foundation for Excellent Young Scholars of China
ID : 42122050
Organisme : the Fundamental Research Funds for the Central Universities
ID : 2022HHZX005
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Aiello, S., Eckstrand, E., Fu, A., Landry, M., & Aboyoun, P. (2016). Machine learning with R and H2O (p. 550). H2O Booklet.
Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340.
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., … Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560, 233-237.
Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18, 182-188.
Brockett, B. F. T., Prescott, C. E., & Grayston, S. J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44, 9-20.
Brown, J. J., Mennicken, S., Massante, J. C., Dijoux, S., Telea, A., Benedek, A. M., Götzenberger, L., Májeková, M., Lepš, J., Šmilauer, P., Hrček, J., & de Bello, F. (2019). A novel method to predict dark diversity using unconstrained ordination analysis. Journal of Vegetation Science, 30, 610-619.
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583.
Carmona, C. P., & Pärtel, M. (2021). Estimating probabilistic site-specific species pools and dark diversity from co-occurrence data. Global Ecology and Biogeography, 30, 316-326.
Chaplin-Kramer, R., Sharp, R. P., Mandle, L., Sim, S., Johnson, J., Butnar, I., Milà i Canals, L., Eichelberger, B. A., Ramler, I., Mueller, C., McLachlan, N., Yousefi, A., King, H., & Kareiva, P. M. (2015). Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 112, 7402-7407.
Chen, Q.-L., Hu, H.-W., He, Z.-Y., Cui, L., Zhu, Y.-G., & He, J.-Z. (2021). Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2, 233-240.
Conradi, T., & Kollmann, J. (2016). Species pools and environmental sorting control different aspects of plant diversity and functional trait composition in recovering grasslands. Journal of Ecology, 104, 1314-1325.
Cornell, H. V., & Harrison, S. P. (2014). What are species pools and when are they important? Annual Review of Ecology, Evolution, and Systematics, 45, 45-67.
Curd, E. E., Martiny, J. B. H., Li, H., & Smith, T. B. (2018). Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 9, e02079.
Custer, G. F., Bresciani, L., & Dini-Andreote, F. (2022). Ecological and evolutionary implications of microbial dispersal. Frontiers in Microbiology, 13, 855859.
Delgado-Baquerizo, M., Bissett, A., Eldridge, D. J., Maestre, F. T., He, J. Z., Wang, J. T., Hamonts, K., Liu, Y. R., Singh, B. K., & Fierer, N. (2017). Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecology & Evolution, 1, 1339-1347.
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Trivedi, P., Osanai, Y., Liu, Y. R., Hamonts, K., Jeffries, T. C., & Singh, B. K. (2016). Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 86, 373-390.
Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., Abu al-Soud, W., Sørensen, S., Bardgett, R. D., & Singh, B. K. (2017). It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188.
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., He, J. Z., Hseu, Z. Y., Hu, H. W., Kirchmair, M., Neuhauser, S., Pérez, C. A., … Singh, B. K. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220.
Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685-688.
Edlinger, A., Garland, G., Hartman, K., Banerjee, S., Degrune, F., García-Palacios, P., Hallin, S., Valzano-Held, A., Herzog, C., Jansa, J., Kost, E., Maestre, F. T., Pescador, D. S., Philippot, L., Rillig, M. C., Romdhane, S., Saghaï, A., Spor, A., Frossard, E., & van der Heijden, M. G. A. (2022). Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nature Ecology & Evolution, 6, 1145-1154.
Ellis, E. C. (2021). Land use and ecological change: A 12,000-year history. Annual Review of Environment and Resources, 46, 1-33.
Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Zhu, Y.-G., & Chu, H. (2020). Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal, 15, 550-561.
Feng, Q., An, C., Chen, Z., & Wang, Z. (2020). Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable and Sustainable Energy Reviews, 133, 110293.
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626-631.
Fine, P. V. A. (2015). Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369-392.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309, 570-574.
Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341, 33-34.
Ge, Y., He, J. Z., Zhu, Y. G., Zhang, J. B., Xu, Z. H., Zhang, L. M., & Zheng, Y. M. (2008). Differences in soil bacterial diversity: Driven by contemporary disturbances or historical contingencies? The ISME Journal, 2, 254-264.
Geisen, S., Wall, D. H., & van der Putten, W. H. (2019). Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology, 29, R1036-R1044.
Grace, J. B., Anderson, T. M., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hautier, Y., Hillebrand, H., Lind, E. M., Pärtel, M., Bakker, J. D., Buckley, Y. M., Crawley, M. J., Damschen, E. I., Davies, K. F., Fay, P. A., Firn, J., Gruner, D. S., Hector, A., … Smith, M. D. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. American Naturalist, 163, 192-211.
Hu, A., Wang, J., Sun, H., Niu, B., Si, G., Wang, J., Yeh, C. F., Zhu, X., Lu, X., Zhou, J., Yang, Y., Ren, M., Hu, Y., Dong, H., & Zhang, G. (2020). Mountain biodiversity and ecosystem functions: Interplay between geology and contemporary environments. The ISME Journal, 14, 931-944.
Huang, M., & Hull, C. M. (2017). Sporulation: How to survive on planet Earth (and beyond). Current Genetics, 63, 831-838.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., … Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577.
Jiao, S., & Lu, Y. H. (2019). Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environmental Microbiology, 22, 1052-1065.
Jiao, S., Xu, Y. Q., Zhang, J., & Lu, Y. H. (2019). Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome, 7, 15.
Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J. C., Willner, W., Gégout, J. C., Agrillo, E., Campos, J. A., Jandt, U., Kącki, Z., Šilc, U., Slezák, M., Tichý, L., Tsiripidis, I., Turtureanu, P. D., Ujházyová, M., & Wohlgemuth, T. (2018). History and environment shape species pools and community diversity in European beech forests. Nature Ecology & Evolution, 2, 483-490.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122.
Karger, D. N., Cord, A. F., Kessler, M., Kreft, H., Kühn, I., Pompe, S., Sandel, B., Sarmento Cabral, J., Smith, A. B., Svenning, J. C., Tuomisto, H., Weigelt, P., & Wesche, K. (2016). Delineating probabilistic species pools in ecology and biogeography. Global Ecology and Biogeography, 25, 489-501.
Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. (2021). CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past Discussions, 2021, 1-27.
Karp, D. S., Rominger, A. J., Zook, J., Ranganathan, J., Ehrlich, P. R., & Daily, G. C. (2012). Intensive agriculture erodes beta-diversity at large scales. Ecology Letters, 15, 963-970.
Kearns, P. J., & Shade, A. (2018). Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: Case studies of resource-based and post-press succession. The ISME Journal, 12, 2575-2581.
Kehoe, L., Romero-Muñoz, A., Polaina, E., Estes, L., Kreft, H., & Kuemmerle, T. (2017). Biodiversity at risk under future cropland expansion and intensification. Nature Ecology & Evolution, 1, 1129-1135.
Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E. D., Clough, Y., Díaz, M., Gabriel, D., Holzschuh, A., Knop, E., Kovács, A., Marshall, E. J. P., Tscharntke, T., & Verhulst, J. (2009). On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B: Biological Sciences, 276, 903-909.
Kraft, N. J. B., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., Stegen, J. C., Vellend, M., Boyle, B., Anderson, M. J., Cornell, H. V., Davies, K. F., Freestone, A. L., Inouye, B. D., Harrison, S. P., & Myers, J. A. (2011). Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
Langenheder, S., & Lindström, E. S. (2019). Factors influencing aquatic and terrestrial bacterial community assembly. Environmental Microbiology Reports, 11, 306-315.
Lauber Christian, L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
Le Provost, G., Thiele, J., Westphal, C., Penone, C., Allan, E., Neyret, M., van der Plas, F., Ayasse, M., Bardgett, R. D., Birkhofer, K., Boch, S., Bonkowski, M., Buscot, F., Feldhaar, H., Gaulton, R., Goldmann, K., Gossner, M. M., Klaus, V. H., Kleinebecker, T., … Manning, P. (2021). Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 12, 3918.
Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9, 119-130.
Lewis, R. J., Szava-Kovats, R., & Pärtel, M. (2016). Estimating dark diversity and species pools: An empirical assessment of two methods. Methods in Ecology and Evolution, 7, 104-113.
Li, X., Zhu, H., Geisen, S., Bellard, C., Hu, F., Li, H., Chen, X., & Liu, M. (2020). Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26, 919-930.
Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., Wu, B., Zhang, M., Nabil, M., Tian, F., Zeng, H., Zhang, N., Bavuudorj, G., Rukundo, E., Liu, W., Bofana, J., Beyene, A. N., & Elnashar, A. (2020). A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sensing of Environment, 251, 112095.
Lozupone, C. A., & Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 11436-11440.
Martiny, J. B. H. (2016). History leaves its mark on soil bacterial diversity. MBio, 7, e00784-16.
Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. J. N. N. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536, 143-145.
McFadden, I. R., Sendek, A., Brosse, M., Bach, P. M., Baity-Jesi, M., Bolliger, J., Bollmann, K., Brockerhoff, E. G., Donati, G., Gebert, F., Ghosh, S., Ho, H.-C., Khaliq, I., Lever, J. J., Logar, I., Moor, H., Odermatt, D., Pellissier, L., de Queiroz, L. J., … Narwani, A. (2023). Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecology Letters, 26, 203-218.
Mclaughlin, A., & Mineau, P. (1995). The impact of agricultural practices on biodiversity. Agriculture, Ecosystems & Environment, 55, 201-212.
Meng, Q., Hou, P., Wu, L., Chen, X., Cui, Z., & Zhang, F. (2013). Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 143, 91-97.
Nemergut, D. R., Schmidt, S. K., Fukami, T., O'Neill, S. P., Bilinski, T. M., Stanish, L. F., Knelman, J. E., Darcy, J. L., Lynch, R. C., Wickey, P., & Ferrenberg, S. (2013). Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77, 342-356.
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., de Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
O'Brien, S. L., Gibbons, S. M., Owens, S. M., Hampton-Marcell, J., Johnston, E. R., Jastrow, J. D., Gilbert, J. A., Meyer, F., & Antonopoulos, D. A. (2016). Spatial scale drives patterns in soil bacterial diversity. Environmental Microbiology, 18, 2039-2051.
Onyenwoke, R. U., Brill, J. A., Farahi, K., & Wiegel, J. (2004). Sporulation genes in members of the low G+C gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology, 182, 182-192.
Outhwaite, C. L., Mccann, P., & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605, 97-102.
Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966-976.
Pärtel, M., Bennett, J. A., & Zobel, M. (2016). Macroecology of biodiversity: Disentangling local and regional effects. New Phytologist, 211, 404-410.
Pärtel, M., Szava-Kovats, R., & Zobel, M. (2011). Dark diversity: Shedding light on absent species. Trends in Ecology & Evolution, 26, 124-128.
Pärtel, M., Szava-Kovats, R., & Zobel, M. (2013). Community completeness: Linking local and dark diversity within the species pool concept. Folia Geobotanica, 48, 307-317.
Pe'er, G., Dicks, L. V., Visconti, P., Arlettaz, R., Báldi, A., Benton, T. G., Collins, S., Dieterich, M., Gregory, R. D., Hartig, F., Henle, K., Hobson, P. R., Kleijn, D., Neumann, R. K., Robijns, T., Schmidt, J., Shwartz, A., Sutherland, W. J., Turbé, A., … Scott, A. V. (2014). EU agricultural reform fails on biodiversity. Science, 344, 1090-1092.
Peng, Z. (2023). Environmental data for 1060 samples. figshare [Dataset]. https://doi.org/10.6084/m9.figshare.24276934.v2
Picazo, F., Vilmi, A., Aalto, J., Soininen, J., Casamayor, E. O., Liu, Y., Wu, Q., Ren, L., Zhou, J., Shen, J., & Wang, J. (2020). Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome, 8, 92.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69, 789-815.
Ranjard, L., Dequiedt, S., Chemidlin Prévost-Bouré, N., Thioulouse, J., Saby, N. P., Lelievre, M., Maron, P. A., Morin, F. E., Bispo, A., Jolivet, C., Arrouays, D., & Lemanceau, P. (2013). Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nature Communications, 4, 1434.
Ravagnani, A., Finan, C. L., & Young, M. (2005). A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genomics, 6, 39.
Riibak, K., Bennett, J. A., Kook, E., Reier, Ü., Tamme, R., Bueno, C. G., & Pärtel, M. (2020). Drivers of plant community completeness differ at regional and landscape scales. Agriculture, Ecosystems & Environment, 301, 107004.
Riibak, K., Ronk, A., Kattge, J., & Pärtel, M. (2017). Dispersal limitation determines large-scale dark diversity in central and northern Europe. Journal of Biogeography, 44, 1770-1780.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 36.
Saleem, M., Hu, J., & Jousset, A. (2019). More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics, 50, 145-168.
Scheiner, S. M., Chiarucci, A., Fox, G. A., Helmus, M. R., Mcglinn, D. J., & Willig, M. R. (2011). The underpinnings of the relationship of species richness with space and time. Ecological Monographs, 81, 195-213.
Setlow, P. (2007). I will survive: DNA protection in bacterial spores. Trends in Microbiology, 15, 172-180.
Shi, Y., Li, Y., Xiang, X., Sun, R., Yang, T., He, D., Zhang, K., Ni, Y., Zhu, Y. G., Adams, J. M., & Chu, H. (2018). Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the north China Plain. Microbiome, 6, 1-12.
Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A., & Delgado-Baquerizo, M. (2020). Crop microbiome and sustainable agriculture. Nature Reviews Microbiology, 18, 601-602.
Tian, J., He, N., Hale, L., Niu, S., Yu, G., Liu, Y., Blagodatskaya, E., Kuzyakov, Y., Gao, Q., & Zhou, J. (2018). Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 32, 61-70.
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260-20264.
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281-284.
Trindade, D. P. F., Carmona, C. P., & Pärtel, M. (2020). Temporal lags in observed and dark diversity in the Anthropocene. Global Change Biology, 26, 3193-3201.
Trindade, D. P. F., Carmona, C. P., Reitalu, T., & Pärtel, M. (2023). Observed and dark diversity dynamics over millennial time scales: Fast life-history traits linked to expansion lags of plants in northern Europe. Proceedings of the Royal Society B: Biological Sciences, 290, 20221904.
Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., de Ruiter, P. C., van der Putten, W. H., Birkhofer, K., Hemerik, L., de Vries, F. T., Bardgett, R. D., Brady, M. V., Bjornlund, L., Jørgensen, H. B., Christensen, S., Hertefeldt, T. D.’., Hotes, S., Gera Hol, W. H., Frouz, J., Liiri, M., Mortimer, S. R., … Hedlund, K. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21, 973-985.
Vasar, M., Davison, J., Sepp, S.-K., Mucina, L., Oja, J., al-Quraishy, S., Anslan, S., Bahram, M., Bueno, C. G., Cantero, J. J., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, W. N., Koorem, K., Meng, Y., Moora, M., Onipchenko, V., Öpik, M., … Zobel, M. (2022). Global soil microbiomes: A new frontline of biome-ecology research. Global Ecology and Biogeography, 31, 1120-1132.
Vellend, M. (2010). Conceptual synthesis in community ecology. Quarterly Review of Biology, 85, 183-206.
Vellend, M. (2016). The theory of ecological communities (MPB-57). Princeton University Press.
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., & van der Heijden, M. G. A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.
Wang, S., Bao, X., Feng, K., Deng, Y., Zhou, W., Shao, P., Zheng, T., Yao, F., Yang, S., Liu, S., Shi, R., Bai, Z., Xie, H., Yu, J., Zhang, Y., Zhang, Y., Sha, L., Song, Q., Liu, Y., … Liang, C. (2021). Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 66, 2025-2035.
Wang, Z., Brown, J. H., Tang, Z., & Fang, J. (2009). Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proceedings of the National Academy of Sciences of the United States of America, 106, 13388-13392.
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309.
Yang, G., Roy, J., Veresoglou, S. D., & Rillig, M. C. (2020). Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist, 229, 2945-2956.
Yang, G., Wagg, C., Veresoglou, S. D., Hempel, S., & Rillig, M. C. (2018). How soil biota drive ecosystem stability. Trends in Plant Science, 23, 1057-1067.
Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., & Glöckner, F. O. (2014). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42, D643-D648.
Zhang, J., Feng, Y., Maestre, F. T., Berdugo, M., Wang, J., Coleine, C., Sáez-Sandino, T., García-Velázquez, L., Singh, B. K., & Delgado-Baquerizo, M. (2023). Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nature Ecology & Evolution, 7, 1002-1011.
Zhang, M., Wu, B., Zeng, H., He, G., Liu, C., Tao, S., Zhang, Q., Nabil, M., Tian, F., Bofana, J., Beyene, A. N., Elnashar, A., Yan, N., Wang, Z., & Liu, Y. (2021). GCI30: A global dataset of 30 m cropping intensity using multisource remote sensing imagery. Earth System Science Data, 13, 4799-4817.
Zhang, X., Liu, S., Wang, J., Huang, Y., Freedman, Z., Fu, S., Liu, K., Wang, H., Li, X., Yao, M., Liu, X., & Schuler, J. (2020). Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nature Communications, 11, 5428.
Zhou, J., & Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81, e00002-17.