Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method.


Journal

Cardiovascular engineering and technology
ISSN: 1869-4098
Titre abrégé: Cardiovasc Eng Technol
Pays: United States
ID NLM: 101531846

Informations de publication

Date de publication:
02 2024
Historique:
received: 07 06 2023
accepted: 18 10 2023
medline: 26 2 2024
pubmed: 3 11 2023
entrez: 3 11 2023
Statut: ppublish

Résumé

Pulsed-field ablation (PFA) has attracted attention for the treatment of atrial fibrillation. This study aimed to further explore the relationship between the transmembrane voltage, pore radius and the intensity and duration of pulsed electric fields, which are closely related to the formation of irreversible electroporation. The different mechanisms of microsecond and nanosecond pulses acting on cardiomyocyte cellular and nuclear membranes were studied. A 3-D cardiomyocyte model with a nucleus was constructed to simulate the process of electroporation in cells under an electric field. Cell membrane electroporation was used to simulate the effect of different pulse parameters on the process of electroporation. Under a single pulse with a field strength of 1 kV/cm and width of 100 μs, the transmembrane potential (TMP) of the cell membrane reached 1.33 V, and the pore density and conductivity increased rapidly. The maximum pore radius of the cell membrane was 43.4 nm, and the electroporation area accounted for 4.6% of the total cell membrane area. The number of pores was positively correlated with the electric field intensity when the cell was exposed to electric fields of 0.5 to 6 kV/cm. Under a nanosecond pulse, the TMP of the nuclear and cell membranes exceeded 1 V after exposure to electric fields with strengths of 4 and 5 kV/cm, respectively. This study simulated the electroporation process of cardiomyocyte, and provides a basis for the selection of parameters for the application of PFA for application toward arrhythmias.

Identifiants

pubmed: 37919538
doi: 10.1007/s13239-023-00694-y
pii: 10.1007/s13239-023-00694-y
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

22-38

Subventions

Organisme : the National Key Research and Development Program
ID : 2021YFC 2400203
Organisme : the Shanghai Municipal Science and Economic and Informatization Commission Project
ID : GYQJ-2018-2-05
Organisme : Medical Engineering Fund of Fudan University
ID : yg2021-38

Informations de copyright

© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.

Références

Ipsen, S., O. Blanck, B. Oborn, F. Bode, G. Liney, P. Hunold, D. Rades, A. Schweikard, and P. J. Keall. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery. Med. Phys. 41(12):120702, 2014. https://doi.org/10.1118/1.4901414 .
doi: 10.1118/1.4901414 pubmed: 25471947
Chugh, S. S., R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, R. F. Gillum, Y. H. Kim, J. H. McAnulty, Z. J. Zheng, M. H. Forouzanfar, M. Naghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray. Worldwide epidemiology of atrial fibrillation a global burden of disease 2010 study. Circulation. 129(8):837–847, 2014. https://doi.org/10.1161/circulationaha.113.005119 .
doi: 10.1161/circulationaha.113.005119 pubmed: 24345399
Bhardwaj, R., and J. S. Koruth. Novel ablation approaches for challenging atrial fibrillation cases (mapping, irrigation, and catheters). Cardiol. Clin. 37(2):207–219, 2019. https://doi.org/10.1016/j.ccl.2019.01.012 .
doi: 10.1016/j.ccl.2019.01.012 pubmed: 30926022
Napotnik, T. B., M. Reberšek, P. T. Vernier, B. Mali, and D. Miklavcic. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry. 110:1–12, 2016. https://doi.org/10.1016/j.bioelechem.2016.02.011 .
doi: 10.1016/j.bioelechem.2016.02.011
Yan, L., Y. L. Chen, M. Su, T. Liu, K. Xu, F. Liang, W. Q. Gu, and S. C. Lu. A single-institution experience with open irreversible electroporation for locally advanced pancreatic carcinoma. Chin. Med. J. 129(24):2920–2925, 2016. https://doi.org/10.4103/0366-6999.195476 .
doi: 10.4103/0366-6999.195476 pubmed: 27958223 pmcid: 5198526
Garcia, P. A., B. Kos, J. H. Rossmeisl, D. Pavliha, D. Miklavcic, and R. V. Davalos. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med. Phys. 44(9):4968–4980, 2017. https://doi.org/10.1002/mp.12401 .
doi: 10.1002/mp.12401 pubmed: 28594449
Niessen, C., L. P. Beyer, B. Pregler, M. Dellinger, B. Trabold, H. J. Schlitt, E. M. Jung, C. Stroszczynski, and P. Wiggermann. Percutaneous ablation of hepatic tumors using irreversible electroporation: a prospective safety and midterm efficacy study in 34 patients. J. Vasc. Interv. Radiol. 27(4):480–486, 2016. https://doi.org/10.1016/j.jvir.2015.12.025 .
doi: 10.1016/j.jvir.2015.12.025 pubmed: 26922979
Narayanan, G., and M. H. Doshi. Irreversible electroporation (IRE) in renal tumors. Curr. Urol. Rep. 17(2):7, 2016. https://doi.org/10.1007/s11934-015-0571-1 .
doi: 10.1007/s11934-015-0571-1
Miller, L., J. Leor, and B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4(6):699–705, 2005. https://doi.org/10.1177/153303460500400615 .
doi: 10.1177/153303460500400615 pubmed: 16292891
Bao, Y., and L. Wu. Pulsed field ablation in cardiac arrhythmia. Chin. J. Cardiac. Arrhyth. 23(6):498–503, 2019. https://doi.org/10.3760/cma.j.issn.1007-6638.2019.06.005 .
doi: 10.3760/cma.j.issn.1007-6638.2019.06.005
Cui, L., and Y. Wang. Pulsed electric field for ablation of arrhythmia. Adv. Cardiovasc. Dis. 43(1):10–13, 2022. https://doi.org/10.16806/j.cnki.issn.1004-3934.2022.01.003 .
doi: 10.16806/j.cnki.issn.1004-3934.2022.01.003
Reddy, V. Y., P. Neuzil, J. S. Koruth, J. Petru, M. Funosako, H. Cochet, L. Sediva, M. Chovanec, S. R. Dukkipati, and P. Jais. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J. Am. Coll. Cardiol. 74(3):315–326, 2019. https://doi.org/10.1016/j.jacc.2019.04.021 .
doi: 10.1016/j.jacc.2019.04.021 pubmed: 31085321
Tang, M., G. D. Niu, J. R. Guo, Y. Qiao, Y. L. Guo, K. Liu, F. Y. Yu, S. X. Weng, and M. P. Fu. Novel pulsed field ablation system in treatment of paroxysmal atrial fibrillation:3 cases. Chin. J. Cardiac Arrhythm. 26(1):3, 2022. https://doi.org/10.3760/cma.j.cn113859-20211203-00243 .
doi: 10.3760/cma.j.cn113859-20211203-00243
Zhu, T. J., Z. Wang, S. Y. Wang, T. C. Shi, X. L. Zhu, K. Z. Ma, Z. Wang, J. N. A. Gao, and H. Jiang. Pulsed field ablation of superior vena cava: feasibility and safety of pulsed field ablation. Front. Cardiovasc. Med. 2021. https://doi.org/10.3389/fcvm.2021.698716 .
doi: 10.3389/fcvm.2021.698716 pubmed: 35187098 pmcid: 8733406
Gowrishankar, T. R., A. T. Esser, Z. Vasilkoski, K. C. Smith, and J. C. Weaver. Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem. Biophys. Res. Commun. 341(4):1266–1276, 2006. https://doi.org/10.1016/j.bbrc.2006.01.094 .
doi: 10.1016/j.bbrc.2006.01.094 pubmed: 16469297
Smith, K. C., T. R. Gowrishankar, A. T. Esser, D. A. Stewart, and J. C. Weaver. The spatially distributed dynamic transmembrane voltage of cells and organelles due to 10-ns pulses: meshed transport networks. IEEE Trans. Plasma Sci. 34(4):1394–1404, 2006. https://doi.org/10.1109/tps.2006.878436 .
doi: 10.1109/tps.2006.878436
Joshi, R. P., Q. Hu, and K. H. Schoenbach. Modeling studies of cell response to ultrashort, high-intensity electric fields-implications for intracellular manipulation. IEEE Trans. Plasma Sci. 32(4):1677–1686, 2004. https://doi.org/10.1109/tps.2004.830971 .
doi: 10.1109/tps.2004.830971
See, C. H., R. A. Abd-Alhameed, and P. S. Excell. Computation of electromagnetic fields in assemblages of biological cells using a modified finite-difference time-domain scheme. IEEE Trans. Microw. Theory Tech. 55(9):1986–1994, 2007. https://doi.org/10.1109/tmtt.2007.904064 .
doi: 10.1109/tmtt.2007.904064
Pavlin, M., N. Pavselj, and D. Miklavcic. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49(6):605–612, 2002. https://doi.org/10.1109/tbme.2002.1001975 .
doi: 10.1109/tbme.2002.1001975 pubmed: 12046706
Pucihar, G., T. Kotnik, B. Valic, and D. Miklavcic. Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann. Biomed. Eng. 34(4):642–652, 2006. https://doi.org/10.1007/s10439-005-9076-2 .
doi: 10.1007/s10439-005-9076-2 pubmed: 16547608
Yao, C., Y. Zhao, C. Li, Y. Mi, and R. Liao. Recent advances in tissue minimally invasive ablation with irreversible electroporation. High Volt. Eng. 40(12):3725–3737, 2014. https://doi.org/10.13336/j.1003-6520.hve.2014.12.011 .
doi: 10.13336/j.1003-6520.hve.2014.12.011
Zimmermann, U., G. Pilwat, and F. Riemann. Dielectric-breakdown of cell-membranes. Biophys. J. 14(11):881–899, 1974. https://doi.org/10.1016/s0006-3495(74)85956-4 .
doi: 10.1016/s0006-3495(74)85956-4 pubmed: 4611517 pmcid: 1334582
Joshi, R. P., and K. H. Schoenbach. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study. Phys. Rev. E. 62(1):1025–1033, 2000. https://doi.org/10.1103/PhysRevE.62.1025 .
doi: 10.1103/PhysRevE.62.1025
Yao, C. G., H. M. Liu, Y. J. Zhao, Y. Mi, S. L. Dong, and Y. P. Lv. Analysis of dynamic processes in single-cell electroporation and their effects on parameter selection based on the finite-element model. IEEE Trans. Plasma Sci. 45(5):889–900, 2017. https://doi.org/10.1109/tps.2017.2681433 .
doi: 10.1109/tps.2017.2681433
Guo, F., K. Qian, L. Zhang, X. Liu, and H. Peng. Multiphysics modelling of electroporation under uni- or bipolar nanosecond pulse sequences. Bioelectrochemistry. 141:9, 2021. https://doi.org/10.1016/j.bioelechem.2021.107878 .
doi: 10.1016/j.bioelechem.2021.107878
Dermol-Cerne, J., T. B. Napotnik, M. Rebersek, and D. Miklavcic. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci. Rep. 10(1):17, 2020. https://doi.org/10.1038/s41598-020-65830-3 .
doi: 10.1038/s41598-020-65830-3
Neu, J. C., and W. Krassowska. Modeling postshock evolution of large electropores. Phys. Rev. E. 67(2):12, 2003. https://doi.org/10.1103/PhysRevE.67.021915 .
doi: 10.1103/PhysRevE.67.021915
Neu, J. C., and W. Krassowska. Asymptotic model of electroporation. Phys. Rev. E. 59(3):3471–3482, 1999. https://doi.org/10.1103/PhysRevE.59.3471 .
doi: 10.1103/PhysRevE.59.3471
Krassowska, W., and P. D. Filev. Modeling electroporation in a single cell. Biophys. J. 92(2):404–417, 2007. https://doi.org/10.1529/biophysj.106.094235 .
doi: 10.1529/biophysj.106.094235 pubmed: 17056739
Pucihar, G., D. Miklavcic, and T. Kotnik. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 56(5):1491–1501, 2009. https://doi.org/10.1109/tbme.2009.2014244 .
doi: 10.1109/tbme.2009.2014244 pubmed: 19203876
Albert, B., A. Johnson, and J. Lewis. Molecular Biology of the Cell, 3rd ed. New York: Garland Science, 1994.
Ivorra, A., and B. Rubinsky. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry. 70(2):287–295, 2007. https://doi.org/10.1016/j.bioelechem.2006.10.005 .
doi: 10.1016/j.bioelechem.2006.10.005 pubmed: 17140860
Sano, M. B., E. A. Henslee, E. M. Schmelz, and R. V. Davalos. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Electrophoresis. 32(22):3164–3171, 2011. https://doi.org/10.1002/elps.201100351 .
doi: 10.1002/elps.201100351 pubmed: 22102497
Yang, J., Y. Huang, X. J. Wang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J. 76(6):3307–3314, 1999. https://doi.org/10.1016/s0006-3495(99)77483-7 .
doi: 10.1016/s0006-3495(99)77483-7 pubmed: 10354456 pmcid: 1300300
Sano, M. B., C. B. Arena, M. R. DeWitt, D. Saur, and R. V. Davalos. In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies. Bioelectrochemistry. 100:69–79, 2014. https://doi.org/10.1016/j.bioelechem.2014.07.010 .
doi: 10.1016/j.bioelechem.2014.07.010 pubmed: 25131187
Gascoyne, P. R. C., R. Pethig, J. P. H. Burt, and F. F. Becker. Membrane-changes accompanying the induced-differentiation of friend murine erythroleukemia-cells studied by dielectrophoresis. Biochim. Biophys. Acta. 1149(1):119–126, 1993. https://doi.org/10.1016/0005-2736(93)90032-u .
doi: 10.1016/0005-2736(93)90032-u pubmed: 8318523
Asami, K., Y. Takahashi, and S. Takashima. Dielectric-properties of mouse lymphocytes and erythrocytes. Biochim. Biophys. Acta. 1010(1):49–55, 1989. https://doi.org/10.1016/0167-4889(89)90183-3 .
doi: 10.1016/0167-4889(89)90183-3 pubmed: 2909250
Hibino, M., M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59(1):209–220, 1991. https://doi.org/10.1016/s0006-3495(91)82212-3 .
doi: 10.1016/s0006-3495(91)82212-3 pubmed: 2015385 pmcid: 1281132
Bureau, M. F., J. Gehl, V. Deleuze, L. M. Mir, and D. Scherman. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim. Biophys. Acta. 1474(3):353–359, 2000. https://doi.org/10.1016/s0304-4165(00)00028-3 .
doi: 10.1016/s0304-4165(00)00028-3 pubmed: 10779687
Andre, F. M., J. Gehl, G. Sersa, V. Preat, P. Hojman, J. Eriksen, M. Golzio, M. Cemazar, N. Pavselj, M. P. Rols, D. Miklavcic, E. Neumann, J. Teissie, and L. M. Mir. Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum. Gene Ther. 19(11):1261–1271, 2008. https://doi.org/10.1089/hum.2008.060 .
doi: 10.1089/hum.2008.060 pubmed: 19866490

Auteurs

Hao Zhang (H)

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China.

Xingkai Ji (X)

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China.

Lianru Zang (L)

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China.

Shengjie Yan (S)

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China. sjyan@fudan.edu.cn.

Xiaomei Wu (X)

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China. xiaomeiwu@fudan.edu.cn.
Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China. xiaomeiwu@fudan.edu.cn.
Yiwu Research Institute, Fudan University, Yiwu, 322000, China. xiaomeiwu@fudan.edu.cn.
Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai, 200032, China. xiaomeiwu@fudan.edu.cn.
Shanghai Engineering Research Center of Assistive Devices, Shanghai, 200093, China. xiaomeiwu@fudan.edu.cn.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins
Angiotensin-Converting Enzyme 2 Humans SARS-CoV-2 Spike Glycoprotein, Coronavirus Receptors, Virus

Classifications MeSH