Impact assessment of metabolite instability in the development and validation of LC-MS/MS bioanalytical assays for measurement of rosuvastatin in human plasma and urine samples.
bioanalytical assay validation
liquid chromatography-tandem mass spectrometry
rosuvastatin
rosuvastatin lactone
unstable drug metabolite
Journal
Biomedical chromatography : BMC
ISSN: 1099-0801
Titre abrégé: Biomed Chromatogr
Pays: England
ID NLM: 8610241
Informations de publication
Date de publication:
02 Nov 2023
02 Nov 2023
Historique:
revised:
25
09
2023
received:
11
09
2023
accepted:
03
10
2023
medline:
3
11
2023
pubmed:
3
11
2023
entrez:
3
11
2023
Statut:
aheadofprint
Résumé
During bioanalytical assay development and validation, maintaining the stability of the parent drug and metabolites of interest is critical. While stability of the parent drug has been thoroughly investigated, the stability of unanalyzed metabolites is often overlooked. When an unstable metabolite is known or suspected to interfere with measurement of the parent drug or other metabolites of interest through back-conversion or other routes, additional tests with these unstable metabolites should be conducted. Here, the development and validation of two assays for quantification of rosuvastatin, one in human plasma and one in human urine, was reported. To this end, additional sets of quality control samples were added during assay validation to ensure the reliability of the assays. Acid treatment of samples is shown to be necessary for rosuvastatin quantification. In this regard, stability issues caused by the metabolite, rosuvastatin lactone, may have been overlooked if assay development and validation had only considered the parent drug, rosuvastatin. These assays represent a case study for how to develop and validate assays with unstable metabolites. Taken together, unstable metabolites should be included in all applicable stability tests.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e5766Informations de copyright
© 2023 John Wiley & Sons, Ltd.
Références
Clarkson, M. R. (2011). Chapter 2-Laboratory assessment of kidney disease. In M. R. Clarkson, C. N. Magee, & B. M. Brenner (Eds.), Pocket companion to Brenner and Rector's the kidney (Eighth ed.) (pp. 21-41). W.B. Saunders.
Cooper, K. J., Martin, P. D., Dane, A. L., Warwick, M. J., Schneck, D. W., & Cantarini, M. V. (2003). Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clinical Pharmacology & Therapeutics, 73(4), 322-329. https://doi.org/10.1016/s0009-9236(02)17633-8
Corsini, A., Maggi, F. M., & Catapano, A. L. (1995). Pharmacology of competitive inhibitors of HMG-COA reductase. Pharmacological Research, 31(1), 9-27. https://doi.org/10.1016/1043-6618(95)80042-5
Fura, A., Harper, T. W., Zhang, H., Fung, L., & Shyu, W. C. (2003). Shift in pH of biological fluids during storage and processing: Effect on bioanalysis. Journal of Pharmaceutical and Biomedical Analysis, 32(3), 513-522. https://doi.org/10.1016/s0731-7085(03)00159-6
Greenwood, J., Steinman, L., & Zamvil, S. S. (2006). Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nature Reviews Immunology, 6(5), 358-370. https://doi.org/10.1038/nri1839
Hanke, N., Gomez-Mantilla, J. D., Ishiguro, N., Stopfer, P., & Nock, V. (2021). Physiologically based pharmacokinetic modeling of rosuvastatin to predict transporter-mediated drug-drug interactions. Pharmaceutical Research, 38(10), 1645-1661. https://doi.org/10.1007/s11095-021-03109-6
He, Y. W., Xue, X. M., Terkeltaub, R., Dalbeth, N., Merriman, T. R., Mount, D. B., & Li, C. G. (2022). Association of acidic urine pH with impaired renal function in primary gout patients: A Chinese population-based cross-sectional study. Arthritis Research & Therapy, 24(1), 32. https://doi.org/10.1186/s13075-022-02725-w
Hebert, P. R., Gaziano, J. M., Chan, K. S., & Hennekens, C. H. (1997). Cholesterol lowering with statin drugs, risk of stroke, and total mortality-An overview of randomized trials. Jama, 278(4), 313-321. https://doi.org/10.1001/jama.1997.03550040069040
Hull, C. K., Penman, A. D., Smith, C. K., & Martin, P. D. (2002). Quantification of rosuvastatin in human plasma by automated solid-phase extraction using tandem mass spectrometric detection. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 772(2), 219-228. https://doi.org/10.1016/s1570-0232(02)00088-0
ICH. (2022). Bioanalytical method validation and study sample analysis M10. https://database.ich.org/sites/default/files/M10_Guideline_Step14_2022_0524.pdf
Istvan, E. S., & Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 292(5519), 1160-1164. https://doi.org/10.1126/science.1059344
Jemal, M., & Xia, Y. Q. (2000). Bioanalytical method validation design for the simultaneous quantitation of analytes that may undergo interconversion during analysis. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 813-827. https://doi.org/10.1016/s0731-7085(00)00245-4
Ji, A. J., Jiang, Z. P., Livson, Y. L., Davis, J. A., Chu, J. X., & Weng, N. D. (2010). Challenges in urine bioanalytical assays: Overcoming nonspecific binding. Bioanalysis, 2(9), 1573-1586. https://doi.org/10.4155/bio.10.114
Kaufman, M. J. (1990). Rate and equilibrium-constants for acid-catalyzed lactone hydrolysis of HMG-CoA reductase inhibitors. International Journal of Pharmaceutics, 66(1-3), 97-106. https://doi.org/10.1016/0378-5173(90)90389-l
Kearney, A. S., Crawford, L. F., Mehta, S. C., & Radebaugh, G. W. (1993). The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharmaceutical Research, 10(10), 1461-1465. https://doi.org/10.1023/a:1018923325359
Landry, D. W., & Bazari, H. (2012). 116-Approach to the patient with renal disease. In L. Goldman & A. I. Schafer (Eds.), Goldman's Cecil medicine (Twenty Fourth ed.) (pp. 708-716). W.B. Saunders. https://doi.org/10.1016/B978-1-4377-1604-7.00116-0
LaRosa, J. C., He, J., & Vupputuri, S. (1999). Effect of statins on risk of coronary disease-A meta-analysis of randomized controlled trials. Jama-Journal of the American Medical Association, 282(24), 2340-2346. https://doi.org/10.1001/jama.282.24.2340
Liao, J. K., & Laufs, U. (2005). Pleiotropic effects of statins. Annual Review of Pharmacology and Toxicology, 45, 89-118. https://doi.org/10.1146/annurev.pharmtox.45.120403.095748
Liu, D. Q., & Pereira, T. (2002). Interference of a carbamoyl glucuronide metabolite in quantitative liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 16(2), 142-146. https://doi.org/10.1002/rcm.549
Macwan, J. S., Ionita, I. A., & Akhlaghi, F. (2012). A simple assay for the simultaneous determination of rosuvastatin acid, rosuvastatin-5S-lactone, and N-desmethyl rosuvastatin in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 402(3), 1217-1227. https://doi.org/10.1007/s00216-011-5548-4
Martin, P. D., Warwick, M. J., Dane, A. L., & Cantarini, M. V. (2003). A double-blind, randomized, incomplete crossover trial to assess the dose proportionality of rosuvastatin in healthy volunteers. Clinical Therapeutics, 25(8), 2215-2224. https://doi.org/10.1016/s0149-2918(03)80214-x
Martin, P. D., Warwick, M. J., Dane, A. L., Hill, S. J., Giles, P. B., Phillips, P. J., & Lenz, E. (2003). Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clinical Therapeutics, 25(11), 2822-2835. https://doi.org/10.1016/s0149-2918(03)80336-3
McTaggart, F., Buckett, L., Davidson, R., Holdgate, G., McCormick, A., Schneck, D., Smith, G., & Warwick, M. (2001). Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. American Journal of Cardiology, 87(5A), 28B-32B. https://doi.org/10.1016/S0002-9149(01)01454-0
Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827-1879. https://doi.org/10.1080/10643389.2014.1000761
Sands, J. M., & Layton, H. E. (2009). The physiology of urinary concentration: An update. Seminars in Nephrology, 29(3), 178-195. https://doi.org/10.1016/j.semnephrol.2009.03.008
Schachter, M. (2005). Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundamental & Clinical Pharmacology, 19(1), 117-125. https://doi.org/10.1111/j.1472-8206.2004.00299.x
Wagner, J. B., Abdel-Rahman, S., Gaedigk, A., Gaedigk, R., Raghuveer, G., Staggs, V. S., & Leeder, J. S. (2020). Impact of SLCO1B1 genetic variation on rosuvastatin systemic exposure in pediatric hypercholesterolemia. CTS, 13(3), 628-637. https://doi.org/10.1111/cts.12749
Welch, A. A., Mulligan, A., Bingham, S. A., & Khaw, K. T. (2008). Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: Results from the European prospective investigation into cancer and nutrition (EPIC)-Norfolk population study. British Journal of Nutrition, 99(6), 1335-1343. https://doi.org/10.1017/s0007114507862350
Weng, N. D., Jiang, X. Y., Newland, K., Coe, R., Lin, P., & Lee, J. (2000). Development and validation of a sensitive method for hydromorphone in human plasma by normal phase liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 23(4), 697-704. https://doi.org/10.1016/s0731-7085(00)00352-6
Won, C. M. (1994). Epimerization and hydrolysis of dalvastatin, a new hydroxymethylglutaryl coenzyme-a (HMG-CoA) reductase inhibitor. Pharmaceutical Research, 11(1), 165-170. https://doi.org/10.1023/a:1018978602141
Worcester, E. M., Bergsland, K. J., Gillen, D. L., & Coe, F. L. (2018). Mechanism for higher urine pH in normal women compared with men. American Journal of Physiology-Renal Physiology, 314(4), F623-F629. https://doi.org/10.1152/ajprenal.00494.2017
Yang, D. J., & Hwang, L. S. (2006). Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. Journal of Chromatography a, 1119(1-2), 277-284. https://doi.org/10.1016/j.chroma.2005.12.031
Yuan, L., Xu, X. S., & Ji, Q. C. (2020). Challenges and recommendations in developing LC-MS/MS bioanalytical assays of labile glucuronides and parent compounds in the presence of glucuronide metabolites. Bioanalysis, 12(9), 615-624. https://doi.org/10.4155/bio-2020-0055