Preparation of atom probe tips from (nano)particles in dispersion using (di)electrophoresis and electroplating.
atom probe tomography
catalyst particles
cryo preparation
nanoparticles
Journal
Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012
Informations de publication
Date de publication:
03 Nov 2023
03 Nov 2023
Historique:
revised:
15
09
2023
received:
07
07
2023
accepted:
17
10
2023
medline:
3
11
2023
pubmed:
3
11
2023
entrez:
3
11
2023
Statut:
aheadofprint
Résumé
The behavior of catalytic particles depends on their chemical structure and morphology. To reveal this information, the characterization with atom probe tomography has huge potential. Despite progresses and papers proposing various approaches towards the incorporation of particles inside atom probe tips, no single approach has been broadly applicable to date. In this paper, we introduce a workflow that allowed us to prepare atom probe specimens from Ga particles in suspension in the size range of 50 nm up to 2 μm. By combining dielectrophoresis and electrodeposition in a suitable way, we achieve a near-tip shape geometry, without a time-consuming FIB lift-out. This workflow is a simple and quick method to prepare atom probe tips and allows for a high preparation throughput. Also, not using a lift-out allowed us to use a cryo-stage, avoiding melting of the Ga particles, while ensuring a mechanical stable atom probe tip. The specimen prepared by this workflow enable a stable measurement and low fracture rates. RESEARCH HIGHLIGHTS: Enabling cryo-preparation of (nano)particles for the atom probe. Characterization of surface and bulk elemental distribution of GaPt model SCALMS.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft
Informations de copyright
© 2023 The Authors. Microscopy Research and Technique published by Wiley Periodicals LLC.
Références
Adineh, V. R., Marceau, R. K. W., Chen, Y., Si, K. J., Velkov, T., Cheng, W., Li, J., & Fu, J. (2017). Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry. Ultramicroscopy, 181, 150-159. https://doi.org/10.1016/j.ultramic.2017.05.002
Bauer, T., Maisel, S., Blaumeiser, D., Vecchietti, J., Taccardi, N., Wasserscheid, P., Bonivardi, A., Görling, A., & Libuda, J. (2019). Operando DRIFTS and DFT study of propane dehydrogenation over solid- and liquid-supported Ga x Pt y catalysts. ACS Catalysis, 9(4), 2842-2853. https://doi.org/10.1021/acscatal.8b04578
Boote, J. J., & Evans, S. D. (2005). Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology, 16(9), 1500-1505. https://doi.org/10.1088/0957-4484/16/9/015
Chen, Y.-S., Griffith, M. J., & Cairney, J. M. (2021). Cryo atom probe: Freezing atoms in place for 3D mapping. Nano Today, 37, 101107. https://doi.org/10.1016/j.nantod.2021.101107
Dantas de Morais, L., Chevalliez, S., & Mouleres, S. (2014). Low temperature FIB cross section: Application to indium micro bumps. Microelectronics Reliability, 54(9-10), 1802-1805. https://doi.org/10.1016/j.microrel.2014.08.004
El-Zoka, A. A., Langelier, B., Botton, G. A., & Newman, R. C. (2017). Enhanced analysis of nanoporous gold by atom probe tomography. Materials Characterization, 128, 269-277. https://doi.org/10.1016/j.matchar.2017.03.013
Felfer, P., Benndorf, P., Masters, A., Maschmeyer, T., & Cairney, J. M. (2014). Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angewandte Chemie International Edition, 53(42), 11190-11193. https://doi.org/10.1002/anie.201405043
Felfer, P., Li, T., Eder, K., Galinski, H., Magyar, A. P., Bell, D. C., Smith, G. D. W., Kruse, N., Ringer, S. P., & Cairney, J. M. (2015). New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy, 159, 413-419. https://doi.org/10.1016/j.ultramic.2015.04.014
Frierdich, A. J., Saxey, D. W., Adineh, V. R., Fougerouse, D., Reddy, S. M., Rickard, W. D. A., Sadek, A. Z., & Southall, S. C. (2019). Direct observation of nanoparticulate goethite recrystallization by atom probe analysis of isotopic tracers. Environmental Science & Technology, 53(22), 13126-13135. https://doi.org/10.1021/acs.est.9b04191
Gault, B., Moody, M. P., Cairney, J. M., & Ringer, S. P. (2012). Atom probe microscopy (Vol. 160). Springer. https://doi.org/10.1007/978-1-4614-3436-8
Giurlani, W., Zangari, G., Gambinossi, F., Passaponti, M., Salvietti, E., Di Benedetto, F., Caporali, S., & Innocenti, M. (2018). Electroplating for decorative applications: Recent trends in research and development. Coatings, 8(8), 260. https://doi.org/10.3390/coatings8080260
Guex, P., & Feschotte, P. (1976). Les systèmes binaires platine-aluminium, platinegallium et platine-indium. Journal of the Less Common Metals, 46(1), 101-116. https://doi.org/10.1016/0022-5088(76)90183-1
Hanson, D., & Hanson, D. (2019). Electroplating. The Crowood Press.
Heck, P. R. (2017). The enigmatic origin of meteoritic nanodiamonds-An approach with atom-probe tomography. Microscopy and Microanalysis, 23(S1), 2276-2277. https://doi.org/10.1017/S1431927617012041
Heck, P. R., Stadermann, F. J., Isheim, D., Auciello, O., Daulton, T. L., Davis, A. M., Elam, J. W., Floss, C., Hiller, J., Larson, D. J., Lewis, J. B., Mane, A., Pellin, M. J., Savina, M. R., Seidman, D. N., & Stephan, T. (2014). Atom-probe analyses of nanodiamonds from Allende. Meteoritics & Planetary Science, 49(3), 453-467. https://doi.org/10.1111/maps.12265
Ishitani, T., & Kaga, H. (1995). Calculation of local temperature rise in focused-ion-beam sample preparation. Journal of Electron Microscopy, 44(5), 331-336. https://doi.org/10.1093/oxfordjournals.jmicro.a051185
Jones, T. B. (1995). Electromechanics of particles (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511574498
Josten, J. P., & Felfer, P. J. (2021). Atom probe analysis of nanoparticles through pick and coat sample preparation. Microscopy and Microanalysis, 28(4), 1188-1197. https://doi.org/10.1017/S1431927621000465
Kanani, N. (2006). Electroplating: Basic principles, processes and practice (1st ed.). Elsevier Science.
Kim, D., Kley, C. S., Li, Y., & Yang, P. (2017). Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2 -C 3 products. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10560-10565. https://doi.org/10.1073/pnas.1711493114
Kim, S., Lim, J., Sahu, R., Kasian, O., Stephenson, L. T., Scheu, C., & Gault, B. (2020). Direct imaging of dopant and impurity distributions in 2D MoS2. Advanced Materials, 32(8), 1907235. https://doi.org/10.1002/adma.201907235
Kim, S.-H., Antonov, S., Zhou, X., Stephenson, L. T., Jung, C., El-Zoka, A. A., Schreiber, D. K., Conroy, M., & Gault, B. (2022). Atom probe analysis of electrode materials for Li-ion batteries: Challenges and ways forward. Journal of Materials Chemistry A, 10(9), 4926-4935. https://doi.org/10.1039/D1TA10050E
Kim, S.-H., Kang, P. W., Park, O. O., Seol, J.-B., Ahn, J.-P., Lee, J. Y., & Choi, P.-P. (2018). A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy, 190, 30-38. https://doi.org/10.1016/j.ultramic.2018.04.005
Kim, S.-H., Yoo, S.-H., Chakraborty, P., Jeong, J., Lim, J., El-Zoka, A. A., Zhou, X., Stephenson, L. T., Hickel, T., Neugebauer, J., Scheu, C., Todorova, M., & Gault, B. (2022). Understanding alkali contamination in colloidal nanomaterials to unlock grain boundary impurity engineering. Journal of the American Chemical Society, 144(2), 987-994. https://doi.org/10.1021/jacs.1c11680
Kuba, J., Mitchels, J., Hovorka, M., Erdmann, P., Berka, L., Kirmse, R., König, J., De Bock, J., Goetze, B., & Rigort, A. (2021). Advanced cryo-tomography workflow developments - Correlative microscopy, milling automation and cryo-lift-out. Journal of Microscopy, 281(2), 112-124. https://doi.org/10.1111/jmi.12939
Larson, D. J., Giddings, A. D., Wu, Y., Verheijen, M. A., Prosa, T. J., Roozeboom, F., Rice, K. P., Kessels, W. M. M., Geiser, B. P., & Kelly, T. F. (2015). Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy, 159, 420-426. https://doi.org/10.1016/j.ultramic.2015.02.014
Li, T., Bagot, P. A. J., Christian, E., Theobald, B. R. C., Sharman, J. D. B., Ozkaya, D., Moody, M. P., Tsang, S. C. E., & Smith, G. D. W. (2014). Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt Nanocatalysts by atom-probe tomography. ACS Catalysis, 4(2), 695-702. https://doi.org/10.1021/cs401117e
Liu, H., & Bau, H. H. (2004). The dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media. Physics of Fluids, 16(5), 1217-1228. https://doi.org/10.1063/1.1649237
Meyers, R. A. (Ed.). (2001). Encyclopedia of physical science and technology (3rd ed.). Elsevier Science.
Miller, M. K., & Russell, K. F. (2007). Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy, 107(9), 761-766. https://doi.org/10.1016/j.ultramic.2007.02.023
Mosiman, D. S., Chen, Y., Yang, L., Hawkett, B., Ringer, S. P., Mariñas, B. J., & Cairney, J. M. (2021). Atom probe tomography of encapsulated hydroxyapatite nanoparticles. Small Methods, 5(2), 2000692. https://doi.org/10.1002/smtd.202000692
Mouton, I., Printemps, T., Grenier, A., Gambacorti, N., Pinna, E., Tiddia, M., Vacca, A., & Mula, G. (2017). Toward an accurate quantification in atom probe tomography reconstruction by correlative electron tomography approach on nanoporous materials. Ultramicroscopy, 182, 112-117. https://doi.org/10.1016/j.ultramic.2017.06.007
Parmenter, C. D., & Nizamudeen, Z. A. (2021). Cryo-FIB-lift-out: Practically impossible to practical reality. Journal of Microscopy, 281(2), 157-174. https://doi.org/10.1111/jmi.12953
Paunovic, M., & Schlesinger, M. (2006). Fundamentals of electrochemical deposition (2nd ed.). John Wiley & Sons.
Perea, D. (2020). Advanced Cryo-FIB specimen preparation and handling of environmentally sensitive materials for APT analysis. Microscopy and Microanalysis, 26(S2), 2094-2095. https://doi.org/10.1017/S1431927620020425
Pesch, G. R., & Du, F. (2021). A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis, 42(1-2), 134-152. https://doi.org/10.1002/elps.202000137
Pethig, R. (2017). Dielectrophoresis: Theory, methodology, and biological applications. John Wiley & Sons, Inc.
Pohl, H. A. (1951). The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 22(7), 869-871. https://doi.org/10.1063/1.1700065
Pohl, H. A., Pollock, K., & Crane, J. S. (1978). Dielectrophoretic force: A comparison of theory and experiment. Journal of Biological Physics, 6(3-4), 133-160. https://doi.org/10.1007/BF02328936
Raman, N., Maisel, S., Grabau, M., Taccardi, N., Debuschewitz, J., Wolf, M., Wittkämper, H., Bauer, T., Wu, M., Haumann, M., Papp, C., Görling, A., Spiecker, E., Libuda, J., Steinrück, H.-P., & Wasserscheid, P. (2019). Highly effective propane dehydrogenation using Ga-Rh supported catalytically active liquid metal solutions. ACS Catalysis, 9(10), 9499-9507. https://doi.org/10.1021/acscatal.9b02459
Raman, N., Wolf, M., Heller, M., Heene-Würl, N., Taccardi, N., Haumann, M., Felfer, P., & Wasserscheid, P. (2021). GaPt supported catalytically active liquid metal solution catalysis for propane dehydrogenation-support influence and coking studies. ACS Catalysis, 11(21), 13423-13433. https://doi.org/10.1021/acscatal.1c01924
Regan, M. J., Tostmann, H., Pershan, P. S., Magnussen, O. M., DiMasi, E., Ocko, B. M., & Deutsch, M. (1997). X-ray study of the oxidation of liquid-gallium surfaces. Physical Review B, 55(16), 10786-10790. https://doi.org/10.1103/PhysRevB.55.10786
Schaffer, M., Pfeffer, S., Mahamid, J., Kleindiek, S., Laugks, T., Albert, S., Engel, B. D., Rummel, A., Smith, A. J., Baumeister, W., & Plitzko, J. M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 16(8), 757-762. https://doi.org/10.1038/s41592-019-0497-5
Schlesinger, M., & Paunovic, M. (Eds.). (2010). Modern electroplating (5th ed.). John Wiley & Sons.
Schreiber, D. K., Perea, D. E., Ryan, J. V., Evans, J. E., & Vienna, J. D. (2018). A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy, 194, 89-99. https://doi.org/10.1016/j.ultramic.2018.07.010
Shukla, N., Tripathi, S. K., Banerjee, A., Ramana, A. S. V., Rajput, N. S., & Kulkarni, V. N. (2009). Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe. Applied Surface Science, 256(2), 475-479. https://doi.org/10.1016/j.apsusc.2009.07.024
Taccardi, N., Grabau, M., Debuschewitz, J., Distaso, M., Brandl, M., Hock, R., Maier, F., Papp, C., Erhard, J., Neiss, C., Peukert, W., Görling, A., Steinrück, H.-P., & Wasserscheid, P. (2017). Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nature Chemistry, 9(9), 862-867. https://doi.org/10.1038/nchem.2822
Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K. M. K., Bagot, P. A. J., Marquis, E. A., Smith, G. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302-307. https://doi.org/10.1038/nnano.2011.42
Tsong, T. T. (1990). Atom-probe field ion microscopy: Field ion emission, and surfaces and interfaces at atomic resolution. Cambridge University Press.
Wang, D., Wang, X., & Rao, W. (2021). Precise regulation of Ga-based liquid metal oxidation. Accounts of Materials Research, 2(11), 1093-1103. https://doi.org/10.1021/accountsmr.1c00173
Xiang, W., Yang, N., Li, X., Linnemann, J., Hagemann, U., Ruediger, O., Heidelmann, M., Falk, T., Aramini, M., DeBeer, S., Muhler, M., Tschulik, K., & Li, T. (2022). 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nature Communications, 13(1), 179. https://doi.org/10.1038/s41467-021-27788-2
Yu, K. M. K., Tong, W., West, A., Cheung, K., Li, T., Smith, G., Guo, Y., & Tsang, S. C. E. (2012). Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nature Communications, 3(1), 1230. https://doi.org/10.1038/ncomms2242