Awake responses suggest inefficient dense coding in the mouse retina.
anesthesia
awake
efficient coding
in vivo recordings
mouse
neuroscience
retinal ganglion cells
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
03 11 2023
03 11 2023
Historique:
received:
18
02
2022
accepted:
28
09
2023
medline:
6
11
2023
pubmed:
3
11
2023
entrez:
3
11
2023
Statut:
epublish
Résumé
The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies. When light enters the eyes, it is focused onto the retina, a thin layer of brain tissue at the back of the eye. The retina converts light information into electrical signals that are transmitted to the rest of the brain to perceive vision. Unlike the rest of the brain, this light-processing tissue can continue working even when removed from an animal, making it easier for scientists to study how the retina works. This has helped it become one of the best-understood parts of the brain. Most knowledge of retinal signal processing comes from studies of isolated retinas. However, it was still unclear if these samples behave the same way as they do in live animals, and whether findings in isolated retinas apply to natural visual processing in an awake state. To determine this, Boissonnet et al. compared the visual responses of the retina in awake mice, anesthetised mice and when isolated from mice. Measurements of retinal electrical signals showed that awake mice responded to light substantially more quickly and strongly than the others. Computational analysis suggested that the amount of information carried to the brain was largely comparable across the different subjects, but the retina in awake mice used more energy. The findings indicate that further studies are needed to better understand how the retina processes visual information in awake animals, rather than just in isolated conditions. Progressing this understanding could ultimately help to develop prosthetic devices that can act as a retina in the future.
Autres résumés
Type: plain-language-summary
(eng)
When light enters the eyes, it is focused onto the retina, a thin layer of brain tissue at the back of the eye. The retina converts light information into electrical signals that are transmitted to the rest of the brain to perceive vision. Unlike the rest of the brain, this light-processing tissue can continue working even when removed from an animal, making it easier for scientists to study how the retina works. This has helped it become one of the best-understood parts of the brain. Most knowledge of retinal signal processing comes from studies of isolated retinas. However, it was still unclear if these samples behave the same way as they do in live animals, and whether findings in isolated retinas apply to natural visual processing in an awake state. To determine this, Boissonnet et al. compared the visual responses of the retina in awake mice, anesthetised mice and when isolated from mice. Measurements of retinal electrical signals showed that awake mice responded to light substantially more quickly and strongly than the others. Computational analysis suggested that the amount of information carried to the brain was largely comparable across the different subjects, but the retina in awake mice used more energy. The findings indicate that further studies are needed to better understand how the retina processes visual information in awake animals, rather than just in isolated conditions. Progressing this understanding could ultimately help to develop prosthetic devices that can act as a retina in the future.
Identifiants
pubmed: 37922200
doi: 10.7554/eLife.78005
pii: 78005
pmc: PMC10624425
doi:
pii:
Banques de données
Dryad
['10.5061/dryad.5x69p8d52']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023, Boissonnet et al.
Déclaration de conflit d'intérêts
TB, MT, HA No competing interests declared
Références
Nature. 2013 Jan 3;493(7430):97-100
pubmed: 23172139
Curr Biol. 2014 Dec 15;24(24):2888-98
pubmed: 25454583
Vis Neurosci. 2009 May-Jun;26(3):297-308
pubmed: 19602302
Front Neurosci. 2015 May 06;9:153
pubmed: 25999806
Neuron. 2012 Oct 18;76(2):266-80
pubmed: 23083731
J Neurosci. 2003 Apr 1;23(7):2645-54
pubmed: 12684450
J Physiol. 1962 Aug;162:451-72
pubmed: 13869507
PLoS Comput Biol. 2019 Nov 14;15(11):e1007476
pubmed: 31725714
Neuron. 2007 Oct 4;56(1):43-57
pubmed: 17920014
Curr Opin Neurobiol. 2001 Aug;11(4):475-80
pubmed: 11502395
J Neurosci. 2018 Nov 7;38(45):9728-9740
pubmed: 30249795
eNeuro. 2018 Aug 29;5(4):
pubmed: 30225342
Doc Ophthalmol. 2007 Nov;115(3):137-44
pubmed: 17479214
J Neurophysiol. 2018 Apr 1;119(4):1437-1449
pubmed: 29357459
Vis Neurosci. 2005 Sep-Oct;22(5):649-59
pubmed: 16332276
Nature. 2003 Jul 3;424(6944):76-81
pubmed: 12808468
Neuron. 2019 Apr 17;102(2):462-476.e8
pubmed: 30799020
J Neurosci. 2014 May 7;34(19):6596-605
pubmed: 24806684
Psychol Rev. 1954 May;61(3):183-93
pubmed: 13167245
J Neurophysiol. 1975 Sep;38(5):1140-61
pubmed: 809547
Neuroscience. 2014 Jan 3;256:101-16
pubmed: 24144626
J Neurosci. 2011 May 25;31(21):7670-81
pubmed: 21613480
Brain Res Rev. 2006 Aug 30;52(1):1-57
pubmed: 16469387
Elife. 2019 Sep 23;8:
pubmed: 31545172
Exp Brain Res. 1984;55(1):111-6
pubmed: 6086369
Curr Biol. 2018 Mar 5;28(5):655-665.e3
pubmed: 29456141
Neuron. 2014 Oct 1;84(1):202-213
pubmed: 25220812
J Neurochem. 1981 Oct;37(4):867-77
pubmed: 7320727
J Neurosci. 2006 Jul 12;26(28):7477-90
pubmed: 16837596
Neuron. 2013 Jul 10;79(1):97-110
pubmed: 23849198
Neuron. 2020 Aug 5;107(3):487-495.e9
pubmed: 32445624
Neuron. 2010 Jan 28;65(2):150-64
pubmed: 20152123
J Physiol. 2018 Dec;596(24):6307-6332
pubmed: 30281795
Neuron. 2012 Oct 4;76(1):209-22
pubmed: 23040816
Curr Biol. 2017 Feb 20;27(4):471-482
pubmed: 28132812
Neuron. 2002 Dec 5;36(5):909-19
pubmed: 12467594
Nature. 2017 Nov 8;551(7679):232-236
pubmed: 29120427
Biomed Opt Express. 2012 Apr 1;3(4):715-34
pubmed: 22574260
J Physiol. 1966 Dec;187(3):517-52
pubmed: 16783910
Front Syst Neurosci. 2014 Oct 07;8:191
pubmed: 25339873
Vision Res. 1985;25(9):1195-6
pubmed: 4071998
J Neurosci Methods. 1994 Jan;51(1):95-106
pubmed: 8189755
Neurosci Res. 2019 Nov;148:28-33
pubmed: 30529110
PLoS One. 2017 Jul 28;12(7):e0180091
pubmed: 28753612
Nat Neurosci. 2008 Jul;11(7):749-51
pubmed: 18552841
J Neurosci. 2012 Nov 14;32(46):16256-64
pubmed: 23152609
J Comp Physiol A. 1990 Mar;166(5):721-34
pubmed: 2341992
Curr Biol. 2014 Dec 15;24(24):2899-907
pubmed: 25484299
Front Cell Neurosci. 2018 Aug 27;12:269
pubmed: 30210298
Nat Neurosci. 2012 Mar 11;15(4):628-35
pubmed: 22406548
J Physiol. 1964 Oct;173:377-407
pubmed: 14220259
J Acoust Soc Am. 1974 Dec;56(6):1835-47
pubmed: 4443483
Neuron. 2014 Jan 22;81(2):388-401
pubmed: 24373883
J Neurosci. 2011 Jun 22;31(25):9192-204
pubmed: 21697370
J Physiol. 1982 Jul;328:171-90
pubmed: 7131312
Vision Res. 2005 May;45(11):1439-46
pubmed: 15743613
J Neurophysiol. 1986 Aug;56(2):261-86
pubmed: 3760921
Cell. 2016 Aug 25;166(5):1308-1323.e30
pubmed: 27565351
Learn Mem. 2007 Mar 08;14(3):134-44
pubmed: 17351136
J Neurosci. 2005 Jun 22;25(25):5903-14
pubmed: 15976079
J Neurophysiol. 1997 Nov;78(5):2336-50
pubmed: 9356386
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):515-20
pubmed: 24347634
J Neurophysiol. 2015 Jul;114(1):540-50
pubmed: 25995351
Curr Biol. 2020 Oct 19;30(20):3923-3934.e9
pubmed: 32795442
Nat Commun. 2022 Sep 5;13(1):5218
pubmed: 36064789
Front Cell Neurosci. 2018 Dec 07;12:481
pubmed: 30581379
Neuron. 2014 Feb 5;81(3):641-52
pubmed: 24507195
J Neurosci. 2007 Jun 6;27(23):6091-102
pubmed: 17553982
J Neurophysiol. 2016 Aug 1;116(2):602-10
pubmed: 27169509
MethodsX. 2016 May 09;3:407-16
pubmed: 27284532
J Neurosci. 2022 Jan 26;42(4):619-630
pubmed: 34872926
J Gen Physiol. 2006 Apr;127(4):359-74
pubmed: 16567464
J Neurosci. 2015 Apr 22;35(16):6575-83
pubmed: 25904807
Anesthesiology. 1999 Feb;90(2):484-91
pubmed: 9952156
Nat Neurosci. 2018 Nov;21(11):1591-1599
pubmed: 30349110
Science. 2018 Jun 29;360(6396):1447-1451
pubmed: 29954976
Front Neural Circuits. 2014 Aug 06;8:92
pubmed: 25147504
PLoS One. 2017 Oct 19;12(10):e0185759
pubmed: 29049297
Science. 2008 Feb 22;319(5866):1108-11
pubmed: 18292344
Neuron. 2019 Nov 6;104(3):576-587.e11
pubmed: 31519460
Nature. 1996 Jun 13;381(6583):607-9
pubmed: 8637596
Curr Biol. 2008 Dec 23;18(24):1917-21
pubmed: 19084410
Biophys J. 1970 May;10(5):380-412
pubmed: 5439318
J Neurosci. 2015 Jul 29;35(30):10815-20
pubmed: 26224863
Neuron. 2010 Feb 25;65(4):472-9
pubmed: 20188652
J Neurosci. 2020 Jul 1;40(27):5177-5195
pubmed: 32457074
J Neurosci. 2016 Oct 12;36(41):10584-10597
pubmed: 27733610
Nature. 2022 Nov;611(7934):E5
pubmed: 36241716
Nat Neurosci. 2015 Jan;18(1):66-74
pubmed: 25485757
Sci Rep. 2019 Oct 22;9(1):15110
pubmed: 31641196
Elife. 2018 Mar 20;7:
pubmed: 29557782
Annu Rev Neurosci. 2015 Jul 8;38:221-46
pubmed: 25897874
Nature. 2016 Jan 21;529(7586):345-50
pubmed: 26735013
Elife. 2023 Nov 03;12:
pubmed: 37922200
Front Neurosci. 2017 Apr 26;11:235
pubmed: 28491019
Cell. 2018 May 31;173(6):1343-1355.e24
pubmed: 29856953
Physiol Rev. 2005 Jul;85(3):845-81
pubmed: 15987797
J Neurophysiol. 2015 Jun 1;113(10):3798-815
pubmed: 25833839
J Neurophysiol. 1953 Jan;16(1):37-68
pubmed: 13035466
Network. 2001 May;12(2):199-213
pubmed: 11405422
J Neurophysiol. 1983 Feb;49(2):303-24
pubmed: 6300340
Commun Biol. 2019 Sep 30;2:356
pubmed: 31583287
PLoS One. 2021 Jul 22;16(7):e0254611
pubmed: 34292988
PLoS One. 2009;4(1):e4320
pubmed: 19177171
J Neurosci. 2002 Apr 1;22(7):2737-47
pubmed: 11923439
J Neurosci. 2016 Nov 30;36(48):12144-12156
pubmed: 27903724
J Neurophysiol. 2007 Sep;98(3):1549-65
pubmed: 17625061
J Neurophysiol. 2013 May;109(9):2415-21
pubmed: 23407356
J Neurophysiol. 2013 Aug;110(4):964-72
pubmed: 23719206
J Neurophysiol. 2007 Aug;98(2):769-85
pubmed: 17553944