Quantifying the Importance of Active Muscle Repositioning a Finite Element Neck Model in Flexion Using Kinematic, Kinetic, and Tissue-Level Responses.

Finite element neck model Neck model repositioning Non-neutral position Tissue-level deformation

Journal

Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512

Informations de publication

Date de publication:
03 Nov 2023
Historique:
received: 18 08 2023
accepted: 24 10 2023
medline: 4 11 2023
pubmed: 4 11 2023
entrez: 4 11 2023
Statut: aheadofprint

Résumé

Non-neutral neck positions are important initial conditions in impact scenarios, associated with a higher incidence of injury. Repositioning in finite element (FE) neck models is often achieved by applying external boundary conditions (BCs) to the head while constraining the first thoracic vertebra (T1). However, in vivo, neck muscles contract to achieve a desired head and neck position generating initial loads and deformations in the tissues. In the present study, a new muscle-based repositioning method was compared to traditional applied BCs using a contemporary FE neck model for forward head flexion of 30°. For the BC method, an external moment (2.6 Nm) was applied to the head with T1 fixed, while for the muscle-based method, the flexors and extensors were co-contracted under gravity loading to achieve the target flexion. The kinematic response from muscle contraction was within 10% of the in vivo experimental data, while the BC method differed by 18%. The intervertebral disc forces from muscle contraction were agreeable with the literature (167 N compression, 12 N shear), while the BC methodology underpredicted the disc forces owing to the lack of spine compression. Correspondingly, the strains in the annulus fibrosus increased by an average of 60% across all levels due to muscle contraction compared to BC method. The muscle repositioning method enhanced the kinetic response and subsequently led to differences in tissue-level responses compared to the conventional BC method. The improved kinematics and kinetics quantify the importance of repositioning FE neck models using active muscles to achieve non-neutral neck positions.

Identifiants

pubmed: 37923814
doi: 10.1007/s10439-023-03396-7
pii: 10.1007/s10439-023-03396-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.

Références

Shugg, J. A. J., C. D. Jackson, and J. P. Dickey. Cervical spine rotation and range of motion: pilot measurements during driving. Traffic. INJ. Prev. 12:82–87, 2011. https://doi.org/10.1080/15389588.2010.529973 .
doi: 10.1080/15389588.2010.529973 pubmed: 21259177
Reed, M., S. Ebert, M. Jones. Naturalistic passenger behavior: postures and activities. 2020.
Stemper, B. D., N. Yoganandan, and F. A. Pintar. Effects of abnormal posture on capsular ligament elongations in a computational model subjected to whiplash loading. J. Biomech. 38:1313–1323, 2005. https://doi.org/10.1016/j.jbiomech.2004.06.013 .
doi: 10.1016/j.jbiomech.2004.06.013 pubmed: 15863116
Storvik, S. G., and B. D. Stemper. Axial head rotation increases facet joint capsular ligament strains in automotive rear impact. Med. Biol. Eng. Comput. 49:153–161, 2011. https://doi.org/10.1007/s11517-010-0682-2 .
doi: 10.1007/s11517-010-0682-2 pubmed: 20878550
Nightingale, R. W., J. Sganga, H. Cutcliffe, R. Cameron. Impact responses of the cervical spine: a computational study of the effects of muscle activity, torso constraint, and pre-flexion. J. Biomech. 49:558–564, 2016. https://doi.org/10.1016/j.jbiomech.2016.01.006 .
doi: 10.1016/j.jbiomech.2016.01.006 pubmed: 26874970
Ivancic, P. C., M. M. Panjabi, Y. Tominaga, and G. F. Malcolmson. Predicting multiplanar cervical spine injury due to head-turned rear impacts using IV-NIC. Traffic. INJ Prev. 7:264–275, 2006. https://doi.org/10.1080/15389580500488499 .
doi: 10.1080/15389580500488499 pubmed: 16990241
Shateri, H., and D. S. Cronin. Out-of-position rear impact tissue-level investigation using detailed finite element neck model. Traffic INJ Prev. 16:698–708, 2015. https://doi.org/10.1080/15389588.2014.1003551 .
doi: 10.1080/15389588.2014.1003551 pubmed: 25664486
Siegmund, G. P., M. B. Davis, K. P. Quinn, et al. Head-turned postures increase the risk of cervical facet capsule injury during whiplash. Spine (Phila Pa 1976). 33:1643–1649, 2008. https://doi.org/10.1097/BRS.0b013e31817b5bcf .
doi: 10.1097/BRS.0b013e31817b5bcf pubmed: 18594456
Palepu, V. Biomechanical effects of initial occupant seated posture during rear end impact injury. University of Toledo. 2013.
Yang, K. Basic finite element method as applied to injury biomechanics. 2017.
Alizadeh, M., G. G. Knapik, P. Mageswaran, et al. Biomechanical musculoskeletal models of the cervical spine: a systematic literature review. Clin. Biomech. 71:115–124, 2020. https://doi.org/10.1016/j.clinbiomech.2019.10.027 .
doi: 10.1016/j.clinbiomech.2019.10.027
Fathollahi, H. Multi-body dynamic analysis of cervical spine for helicopter pilots. Ryerson University. 2012.
Hetzler, M. Dynamic modelling for the design of head-neck load carriage systems. Queen’s University. 2021
Rattanagraikanakorn, B., M. Schuurman, D. I. Gransden, et al. Modelling head injury due to unmanned aircraft systems collision: Crash dummy vs human body. Int. J. Crashworthiness. 27:400–413, 2022. https://doi.org/10.1080/13588265.2020.1807687 .
doi: 10.1080/13588265.2020.1807687
Stemper, B. D., N. Yoganandan, and F. A. Pintar. Validation of a head-neck computer model for whiplash simulation. Med. Biol. Eng. Comput. 42:333–338, 2004. https://doi.org/10.1007/BF02344708 .
doi: 10.1007/BF02344708 pubmed: 15191078
Lopik, D. W., and M. Acar. Development of a multi-body computational model of human head and neck. Proc Inst Mech Eng Part K. 2007. https://doi.org/10.1243/14644193JMBD84 .
doi: 10.1243/14644193JMBD84
Tierney, G. J., and C. K. Simms. The effects of tackle height on inertial loading of the head and neck in Rugby Union: a multibody model analysis. Brain INJ. 31:1925–1931, 2017. https://doi.org/10.1080/02699052.2017.1385853 .
doi: 10.1080/02699052.2017.1385853 pubmed: 29064724
Roos, P. E., A. Vasavada, L. Zheng, and X. Zhou. Neck musculoskeletal model generation through anthropometric scaling. PLoS ONE.15:e0219954, 2020.
doi: 10.1371/journal.pone.0219954 pubmed: 31990914 pmcid: 6986765
Dibb, A. T., H. C. Cutcliffe, J. F. Luck, et al. Pediatric head and neck dynamics in frontal impact: analysis of important mechanical factors and proposed neck performance corridors for 6- and 10-year-old ATDs. Traffic. INJ Prev. 15:386–394, 2014. https://doi.org/10.1080/15389588.2013.824568 .
doi: 10.1080/15389588.2013.824568 pubmed: 24471363
Stemper, B. D., N. Yoganandan, J. F. Cusick, and F. A. Pintar. Stabilizing effect of precontracted neck musculature in whiplash. Spine (Phila Pa 1976). 2006. https://doi.org/10.1097/01.brs.0000240210.23617.e7 .
doi: 10.1097/01.brs.0000240210.23617.e7 pubmed: 16985440
Barrett, J. M., C. D. McKinnon, C. R. Dickerson, and J. P. Callaghan. An electromyographically driven cervical spine model in OpenSim. J. Appl. Biomech. 37:481–493, 2021. https://doi.org/10.1123/jab.2020-0384 .
doi: 10.1123/jab.2020-0384 pubmed: 34544899
Barrett, J. M., C. McKinnon, and J. P. Callaghan. Cervical spine joint loading with neck flexion. Ergonomics. 63:101–108, 2020. https://doi.org/10.1080/00140139.2019.1677944 .
doi: 10.1080/00140139.2019.1677944 pubmed: 31594480
Mathys, R., and S. J. Ferguson. Simulation of the effects of different pilot helmets on neck loading during air combat. J. Biomech. 45:2362–2367, 2012. https://doi.org/10.1016/j.jbiomech.2012.07.014 .
doi: 10.1016/j.jbiomech.2012.07.014 pubmed: 22840756
Mortensen, J. D., A. N. Vasavada, and A. S. Merryweather. The inclusion of hyoid muscles improve moment generating capacity and dynamic simulations in musculoskeletal models of the head and neck. PLoS ONE. 13:e0199912–e0199912, 2018. https://doi.org/10.1371/journal.pone.0199912 .
doi: 10.1371/journal.pone.0199912 pubmed: 29953539 pmcid: 6023174
van Lopik, D. W., and M. Acar. Dynamic verification of a multi-body computational model of human head and neck for frontal, lateral, and rear impacts. Proc. Inst. Mech. Eng. Part K. 221:199–217, 2007. https://doi.org/10.1243/14644193JMBD89 .
doi: 10.1243/14644193JMBD89
Diao, H., H. Xin, J. Dong, et al. Prediction of cervical spinal joint loading and secondary motion using a musculoskeletal multibody dynamics model via force-dependent kinematics approach. Spine (Phila Pa 1976). 42:48, 2017.
doi: 10.1097/BRS.0000000000002176
Cazzola, D., T. P. Holsgrove, E. Preatoni, et al. Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading. PLoS ONE.12:e0169329, 2017.
doi: 10.1371/journal.pone.0169329 pubmed: 28052130 pmcid: 5214544
de Bruijn, E., F. C. T. van der Helm, and R. Happee. Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom. Multibody Syst. Dyn. 36:339–362, 2016. https://doi.org/10.1007/s11044-015-9461-z .
doi: 10.1007/s11044-015-9461-z
Millard, M., T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135:21005, 2013. https://doi.org/10.1115/1.4023390 .
doi: 10.1115/1.4023390
Moore, C. A. B., J. M. Barrett, L. Healey, et al. Predicting cervical spine compression and shear in helicopter helmeted conditions using artificial neural networks. IISE Trans. Occup. Ergon. Hum. Factors. 9:154–166, 2021. https://doi.org/10.1080/24725838.2021.1938760 .
doi: 10.1080/24725838.2021.1938760 pubmed: 34092207
Arshad, R., H. Schmidt, M. El-Rich, and K. Moglo. Sensitivity of the cervical disc loads, translations, intradiscal pressure, and muscle activity due to segmental mass, disc stiffness, and muscle strength in an upright neutral posture. Front. Bioeng. Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.751291 .
doi: 10.3389/fbioe.2022.751291 pubmed: 35573240 pmcid: 9092493
DeWit, J. A., and D. S. Cronin. Cervical spine segment finite element model for traumatic injury prediction. J. Mech. Behav. Biomed. Mater. 10:138–150, 2012. https://doi.org/10.1016/j.jmbbm.2012.02.015 .
doi: 10.1016/j.jmbbm.2012.02.015 pubmed: 22520426
Panzer, M. B., and D. S. Cronin. C4–C5 segment finite element model development, validation, and load-sharing investigation. J. Biomech. 42:480–490, 2009. https://doi.org/10.1016/j.jbiomech.2008.11.036 .
doi: 10.1016/j.jbiomech.2008.11.036 pubmed: 19200548
Mustafy, T., K. Moglo, S. Adeeb, and M. El-Rich. Injury mechanisms of the ligamentous cervical C2–C3 Functional Spinal Unit to complex loading modes: finite element study. J. Mech. Behav. Biomed Mater. 53:384–396, 2016. https://doi.org/10.1016/j.jmbbm.2015.08.042 .
doi: 10.1016/j.jmbbm.2015.08.042 pubmed: 26409229
Nasim, M., A. Cernicchi, and U. Galvanetto. Development of a finite element neck model for head-first compressive impacts: toward the assessment of motorcycle neck protective equipment. Proc. Inst. Mech. Eng. Part H. 2021. https://doi.org/10.1177/09544119211018112 .
doi: 10.1177/09544119211018112
Zhang, Q. H., E. C. Teo, and H. W. Ng. Development and validation of a CO-C7 FE complex for biomechanical study. J. Biomech. Eng. 127:729–735, 2005. https://doi.org/10.1115/1.1992527 .
doi: 10.1115/1.1992527 pubmed: 16248301
Beauséjour, M.-H., Y. Petit, J. Hagen, et al. Contribution of injured posterior ligamentous complex and intervertebral disc on post-traumatic instability at the cervical spine. Comput. Methods Biomech. Biomed. Eng. 23:832–843, 2020. https://doi.org/10.1080/10255842.2020.1767776 .
doi: 10.1080/10255842.2020.1767776
Beauséjour, M.-H., E. Wagnac, P.-J. Arnoux, et al. Numerical investigation of spinal cord injury after flexion-distraction injuries at the cervical spine. J Biomech. Eng. 2021. https://doi.org/10.1115/1.4052003 .
doi: 10.1115/1.4052003
Meyer, F., N. Bourdet, C. Deck, et al. Human neck finite element model development and validation against original experimental data. Stapp. Car. Crash J. 48:177–206, 2004.
pubmed: 17230266
Putra, I. P. A., J. Iraeus, F. Sato, et al. Optimization of female head-neck model with active reflexive cervical muscles in low severity rear impact collisions. Ann. Biomed. Eng. 49:115–128, 2021. https://doi.org/10.1007/s10439-020-02512-1 .
doi: 10.1007/s10439-020-02512-1 pubmed: 32333133
Barker, J. B., and D. S. Cronin. Multilevel validation of a male neck finite element model with active musculature. J. Biomech. Enga. 2021. https://doi.org/10.1115/1.4047866 .
doi: 10.1115/1.4047866
Kato D, Nakahira Y, Atsumi N, Iwamoto M (2018) Development of human‐body model THUMS Version 6 containing Muscle Controllers and Application to Injury Analysis in Frontal Collision after Brake Deceleration. In: International Research Council on Biomechanics of Injury. pp 207–223
Sun, J., A. Rojas, R. Kraenzler, and P. J. Arnoux. Investigation of motorcyclist safety systems contributions to prevent cervical spine injuries using HUMOS model. Int. J. Crashworthiness. 17:571–581, 2012. https://doi.org/10.1080/13588265.2012.700097 .
doi: 10.1080/13588265.2012.700097
Brolin, K., S. Hedenstierna, P. Halldin, et al. The importance of muscle tension on the outcome of impacts with a major vertical component. Int. J. Crashworthiness. 13:487–498, 2008. https://doi.org/10.1080/13588260802215510 .
doi: 10.1080/13588260802215510
Cronin, D. S. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J. Mech. Behav. Biomed. Mater. 33:55–66, 2014. https://doi.org/10.1016/j.jmbbm.2013.01.006 .
doi: 10.1016/j.jmbbm.2013.01.006 pubmed: 23466282
Correia, M. A., S. D. McLachlin, and D. S. Cronin. Optimization of muscle activation schemes in a finite element neck model simulating volunteer frontal impact scenarios. J. Biomech. 104:109754, 2020. https://doi.org/10.1016/j.jbiomech.2020.109754 .
doi: 10.1016/j.jbiomech.2020.109754 pubmed: 32224052
Correia, M. A., S. D. McLachlin, and D. S. Cronin. Vestibulocollic and cervicocollic muscle reflexes in a finite element neck model during multidirectional impacts. Ann. Biomed. Eng. 49:1645–1656, 2021. https://doi.org/10.1007/s10439-021-02783-2 .
doi: 10.1007/s10439-021-02783-2 pubmed: 33942199
Barker, J. B., D. S. Cronin, and R. W. Nightingale. Lower cervical spine motion segment computational model validation: kinematic and kinetic response for quasi-static and dynamic loading. J Biomech Eng:. 2017. https://doi.org/10.1115/1.4036464 .
doi: 10.1115/1.4036464 pubmed: 28418508
Lasswell, T. L., D. S. Cronin, J. B. Medley, and P. Rasoulinejad. Incorporating ligament laxity in a finite element model for the upper cervical spine. Spine J. 17:1755–1764, 2017. https://doi.org/10.1016/j.spinee.2017.06.040 .
doi: 10.1016/j.spinee.2017.06.040 pubmed: 28673824
Corrales, M. A., and D. S. Cronin. Importance of the cervical capsular joint cartilage geometry on head and facet joint kinematics assessed in a Finite element neck model. J. Biomech. 123:110528, 2021. https://doi.org/10.1016/j.jbiomech.2021.110528 .
doi: 10.1016/j.jbiomech.2021.110528 pubmed: 34082236
Gierczycka, D., A. Rycman, and D. Cronin. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model. Traffic INJ Prev. 22:407–412, 2021. https://doi.org/10.1080/15389588.2021.1918685 .
doi: 10.1080/15389588.2021.1918685 pubmed: 34037475
Hadagali, P., and D. S. Cronin. Enhancing the biofidelity of an upper cervical spine finite element model within the physiologic range of motion and its effect on the full ligamentous neck model response. J Biomech Eng. 2023. https://doi.org/10.1115/1.4055037 .
doi: 10.1115/1.4055037 pubmed: 35864785
Jani, D., A. Chawla, S. Mukherjee, et al. Repositioning the knee joint in human body FE models using a graphics-based technique. Traffic INJ Prev. 13:640–649, 2012. https://doi.org/10.1080/15389588.2012.664669 .
doi: 10.1080/15389588.2012.664669 pubmed: 23137095
John, J. D., G. Saravana Kumar, and N. Yoganandan. Rear-impact neck whiplash: role of head inertial properties and spine morphological variations on segmental rotations. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4043666 .
doi: 10.1115/1.4043666 pubmed: 31053837
Janak, T., Lafon, Y., Petit, P., Beillas, P. 2018. Transformation smoothing to use after positioning of finite element human body models. In: International Research Council on Biomechanics of Injury. pp 18–33
Boakye-Yiadom, S., and D. S. Cronin. On the importance of retaining stresses and strains in repositioning computational biomechanical models of the cervical spine. Int. J. Numer. Method Biomed. Eng. 2018. https://doi.org/10.1002/cnm.2905 .
doi: 10.1002/cnm.2905 pubmed: 28570783
Corrales, M. A., and D. S. Cronin. Sex, age and stature affects neck biomechanical responses in frontal and rear impacts assessed using finite element head and neck models. Front. Bioeng. Biotechnol. 9:857, 2021. https://doi.org/10.3389/fbioe.2021.681134 .
doi: 10.3389/fbioe.2021.681134
Patwardhan, A. G., R. M. Havey, A. J. Ghanayem, et al. Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine. 25:25, 2000.
doi: 10.1097/00007632-200006150-00015
Wawrose, R. A., F. E. Howington, C. M. LeVasseur, et al. Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 39:1217–1226, 2021. https://doi.org/10.1002/jor.24702 .
doi: 10.1002/jor.24702
Cai, X.-Y., C.-X. YuChi, C.-F. Du, and Z.-J. Mo. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study. Med. Biol. Eng. Comput. 58:1695–1705, 2020. https://doi.org/10.1007/s11517-020-02189-7 .
doi: 10.1007/s11517-020-02189-7 pubmed: 32462554
Kwon, S. W., C. H. Kim, C. K. Chung, et al. The formation of extragraft bone bridging after anterior cervical discectomy and fusion: a finite element analysis. J. Korean Neurosurg. Soc. 60:611–619, 2017. https://doi.org/10.3340/jkns.2017.0178 .
doi: 10.3340/jkns.2017.0178 pubmed: 29142619 pmcid: 5678065
Lee, M. J., M. Dumonski, F. M. Phillips, et al. Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion. Spine (Phila Pa 1976). 36:48, 2011.
doi: 10.1097/BRS.0b013e3181fc1aff
Straker, L., R. Skoss, A. Burnett, and R. Burgess-Limerick. Effect of visual display height on modelled upper and lower cervical gravitational moment, muscle capacity and relative strain. Ergonomics. 52:204–221, 2009. https://doi.org/10.1080/00140130802331609 .
doi: 10.1080/00140130802331609 pubmed: 19296320
Ordway, N. R., R. J. Seymour, R. G. Donelson, et al. Cervical flexion, extension, protrusion, and retraction: a radiographic segmental analysis. Spine (Phila Pa 1976). 24:58, 1999.
doi: 10.1097/00007632-199902010-00008
Sato, F., Nakajima, T., Ono, K., et al. Characteristics of dynamic cervical vertebral kinematics for female and male volunteers in low‐speed rear impact, based on quasi‐static neck kinematics. In: International Research Council on Biomechanics of Injury. pp 261–277 2015.
Takatori, R., D. Tokunaga, N. Inoue, et al. In vivo segmental motion of the cervical spine in rheumatoid arthritis patients with atlantoaxial subluxation. Clin. Exp. Rheumatol. 26:58, 2008.
Wu, S.-K., L.-C. Kuo, H.-C.H. Lan, et al. Segmental percentage contributions of cervical spine during different motion ranges of flexion and extension. Clin. Spine Surg. 23:58, 2010.
Ivancic, P. C. Effects of orthoses on three-dimensional load-displacement properties of the cervical spine. Eur Spine J. 22:169–177, 2013. https://doi.org/10.1007/s00586-012-2552-0 .
doi: 10.1007/s00586-012-2552-0 pubmed: 23090094
Panjabi, M. M., J. J. Crisco, A. Vasavada, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine. 26:2692–2700, 2001. https://doi.org/10.1097/00007632-200112150-00012 .
doi: 10.1097/00007632-200112150-00012 pubmed: 11740357
Barrett, J. M. An EMG-driven cervical spine model for the investigation of joint kinetics: with application to a helicopter pilot population. University of Waterloo. 2016.
Rycman, A., S. D. McLachlin, and D. S. Cronin. Spinal cord boundary conditions affect brain tissue strains in impact simulations. Ann. Biomed. Eng. 2022. https://doi.org/10.1007/s10439-022-03089-7 .
doi: 10.1007/s10439-022-03089-7 pubmed: 36183024
Bruneau, D. A., and D. S. Cronin. Head and neck response of an active human body model and finite element anthropometric test device during a linear impactor helmet test. J. Biomech. Eng. 2019. https://doi.org/10.1115/1.4043667 .
doi: 10.1115/1.4043667
McGill, S. M., K. Jones, G. Bennett, and P. J. Bishop. Passive stiffness of the human neck in flexion, extension, and lateral bending. Clin. Biomech. (Bristol, Avon). 9:193–198, 1994. https://doi.org/10.1016/0268-0033(94)90021-3 .
doi: 10.1016/0268-0033(94)90021-3 pubmed: 23916181
Alkhouli, N., J. Mansfield, E. Green, et al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Physiol. Metab. 305:E1427–E1435, 2013. https://doi.org/10.1152/ajpendo.00111.2013 .
doi: 10.1152/ajpendo.00111.2013
Persad, L. S., B. I. Binder-Markey, A. Y. Shin, et al. In vivo human gracilis whole-muscle passive stress-sarcomere strain relationship. J. Exp. Biol. 2021. https://doi.org/10.1242/jeb.242722 .
doi: 10.1242/jeb.242722 pubmed: 34355750 pmcid: 8443864
Gąsior-Głogowska, M., M. Komorowska, J. Hanuza, et al. FT-Raman spectroscopic study of human skin subjected to uniaxial stress. J. Mech. Behav. Biomed. Mater. 18:240–252, 2013. https://doi.org/10.1016/j.jmbbm.2012.11.023 .
doi: 10.1016/j.jmbbm.2012.11.023 pubmed: 23290820
Paul, S. Biodynamic excisional skin tension (BEST) lines: revisiting langer’s lines, skin biomechanics, current concepts in cutaneous surgery, and the (lack of) science behind skin lines used for surgical excisions. J. Dermatol. Res. 2:77–87, 2017. https://doi.org/10.17554/j.issn.2413-8223.2017.02.19 .
doi: 10.17554/j.issn.2413-8223.2017.02.19
Shergold, O., N. Fleck, and D. Radford. The uniaxial stress versus strain response of pig skin and silicon rubber at low and high strain rates. Int. J. Impact. Eng. 32:1384–1402, 2006. https://doi.org/10.1016/j.ijimpeng.2004.11.010 .
doi: 10.1016/j.ijimpeng.2004.11.010
Varghese, V., J. Baisden, and N. Yoganandan. Normalization technique to build patient specific muscle model in finite element head neck spine. Med. Eng. Phys. 107:103857, 2022. https://doi.org/10.1016/j.medengphy.2022.103857 .
doi: 10.1016/j.medengphy.2022.103857 pubmed: 36068040
Fice, J. B., D. S. Cronin, and M. B. Panzer. Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39:2152–2162, 2011. https://doi.org/10.1007/s10439-011-0315-4 .
doi: 10.1007/s10439-011-0315-4 pubmed: 21533673
Panzer, M. B. Numerical modelling of the human cervical spine in frontal impact. University of Waterloo. 2006
Lee, S., H. Kang, and G. Shin. Head flexion angle while using a smartphone. Ergonomics. 58:220–226, 2015. https://doi.org/10.1080/00140139.2014.967311 .
doi: 10.1080/00140139.2014.967311 pubmed: 25323467
Han, H., S. Gwon, M. Kim, and G. Shin. Head tilt angle when using smartphone while walking. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 62:956–959, 2018. https://doi.org/10.1177/1541931218621220 .
doi: 10.1177/1541931218621220
Newell, R. S., J.-S. Blouin, J. Street, et al. The neutral posture of the cervical spine is not unique in human subjects. J. Biomech. 80:53–62, 2018. https://doi.org/10.1016/j.jbiomech.2018.08.012 .
doi: 10.1016/j.jbiomech.2018.08.012 pubmed: 30170839
Callaghan, J. P. The influence of neck posture and helmet configuration on neck muscle demands. Waterloo. 2014.
Cheng, C.-H., A. Chien, W.-L. Hsu, et al. Investigation of the differential contributions of superficial and deep muscles on cervical spinal loads with changing head postures. PLoS ONE.11:e0150608, 2016.
doi: 10.1371/journal.pone.0150608 pubmed: 26938773 pmcid: 4777436
Kim, S., and W. Jeong. Physiological and psychological neck load imposed by ballistic helmets during simulated military activities. Fash Text. 7:27, 2020. https://doi.org/10.1186/s40691-020-00216-7 .
doi: 10.1186/s40691-020-00216-7
Mahmood, M. N., A. Tabasi, I. Kingma, and J. Van Dieen. A novel passive neck orthosis for patients with degenerative muscle diseases: development & evaluation. J. Electromyogr. Kinesiol.57:102515, 2021. https://doi.org/10.1016/j.jelekin.2021.102515 .
doi: 10.1016/j.jelekin.2021.102515 pubmed: 33453439
Jin, X., Z. Feng, V. Mika, et al. The role of neck muscle activities on the risk of mild traumatic brain injury in american football. J Biomech Eng Doi. 10(1115/1):4037399, 2017.
Tapanya, W., R. Puntumetakul, M. Swangnetr Neubert, and R. Boucaut. Influence of neck flexion angle on gravitational moment and neck muscle activity when using a smartphone while standing. Ergonomics. 64:900–911, 2021. https://doi.org/10.1080/00140139.2021.1873423 .
doi: 10.1080/00140139.2021.1873423 pubmed: 33428546
Guan, X., G. Fan, X. Wu, et al. Photographic measurement of head and cervical posture when viewing mobile phone: a pilot study. Eur. Spine J. 24:2892–2898, 2015. https://doi.org/10.1007/s00586-015-4143-3 .
doi: 10.1007/s00586-015-4143-3 pubmed: 26206292
Torkamani, M. H., H. R. Mokhtarinia, M. Vahedi, and C. P. Gabel. Relationships between cervical sagittal posture, muscle endurance, joint position sense, range of motion and level of smartphone addiction. BMC Musculoskelet. Disord. 24:61, 2023. https://doi.org/10.1186/s12891-023-06168-5 .
doi: 10.1186/s12891-023-06168-5 pubmed: 36690958 pmcid: 9869316
Reed, M., M. Jones. A parametric model of cervical spine geometry and posture. Ann Arbor. 2017
Mattucci, S. F. E., J. A. Moulton, N. Chandrashekar, and D. S. Cronin. Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10:216–226, 2012. https://doi.org/10.1016/j.jmbbm.2012.02.004 .
doi: 10.1016/j.jmbbm.2012.02.004 pubmed: 22520433
Ito, S., P. C. Ivancic, A. M. Pearson, et al. Cervical intervertebral disc injury during simulated frontal impact. Eur. Spine J. 14:356–365, 2005. https://doi.org/10.1007/s00586-004-0783-4 .
doi: 10.1007/s00586-004-0783-4 pubmed: 15940480
Holzapfel, G. A., C. A. J. Schulze-Bauer, G. Feigl, and P. Regitnig. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3:125–140, 2005. https://doi.org/10.1007/s10237-004-0053-8 .
doi: 10.1007/s10237-004-0053-8 pubmed: 15778871
Isaacs, J. Micromechanics of the annulus fibrosus: role of biomolecules in mechanical function. Drexel University. 2012
Pezowicz, C. Analysis of selected mechanical properties of intervertebral disc annulus fibrosus in macro and microscopic scale. J. Theor. Appl. Mech. 48:4, 2010.
Cronin DS, Singh D, Gierczycka D, et al (2018) Chapter 13 - Modeling the Neck for Impact Scenarios. In: Yang K-HBT-BFEM as A to IB (ed). Academic Press, pp 503–538
Cheng, C.-H., K.-H. Lin, and J.-L. Wang. Co-contraction of cervical muscles during sagittal and coronal neck motions at different movement speeds. Eur. J. Appl. Physiol. 103:647–654, 2008. https://doi.org/10.1007/s00421-008-0760-4 .
doi: 10.1007/s00421-008-0760-4 pubmed: 18478252
Cheng, C.-H., H.-Y.K. Cheng, C.P.-C. Chen, et al. Altered co-contraction of cervical muscles in young adults with chronic neck pain during voluntary neck motions. J. Phys. Ther. Sci. 26:587–590, 2014. https://doi.org/10.1589/jpts.26.587 .
doi: 10.1589/jpts.26.587 pubmed: 24764639 pmcid: 3996427
Ning, X., Y. Huang, B. Hu, and A. D. Nimbarte. Neck kinematics and muscle activity during mobile device operations. Int. J. Ind. Ergon. 48:10–15, 2015. https://doi.org/10.1016/j.ergon.2015.03.003 .
doi: 10.1016/j.ergon.2015.03.003
Namwongsa, S., R. Puntumetakul, M. S. Neubert, and R. Boucaut. Effect of neck flexion angles on neck muscle activity among smartphone users with and without neck pain. Ergonomics. 62:1524–1533, 2019. https://doi.org/10.1080/00140139.2019.1661525 .
doi: 10.1080/00140139.2019.1661525 pubmed: 31451087
Oi, N., M. G. Pandy, B. S. Myers, et al. Variation of neck muscle strength along the human cervical spine. Stapp Car Crash J. 48:397–417, 2004.
pubmed: 17230275
Mansoor, S. N., and F. A. Rathore. Accessory clavicular sternocleidomastoid causing torticollis in an adult. Prog. Rehabil. Med. 3:20180006, 2018. https://doi.org/10.2490/prm.20180006 .
doi: 10.2490/prm.20180006 pubmed: 32789231 pmcid: 7365242
Anderst, W. J., W. F. Donaldson, J. Y. Lee, and J. D. Kang. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J. Biomech. 48:1286–1293, 2015. https://doi.org/10.1016/j.jbiomech.2015.02.049 .
doi: 10.1016/j.jbiomech.2015.02.049 pubmed: 25814180
Snyder, R. G., Chaffin, D. B., Foust, D. R. Bioengineering study of basic physical measurements related to susceptibility to cervical hyperextension-hyperflexion injury. Ann Arbor. 1975.

Auteurs

Prasannaah Hadagali (P)

Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

Steven L Fischer (SL)

Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

Jack P Callaghan (JP)

Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.

Duane S Cronin (DS)

Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada. dscronin@uwaterloo.ca.

Classifications MeSH