Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)


Journal

World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472

Informations de publication

Date de publication:
04 Nov 2023
Historique:
received: 28 07 2023
accepted: 05 10 2023
medline: 6 11 2023
pubmed: 4 11 2023
entrez: 4 11 2023
Statut: epublish

Résumé

The selection of effective antibiotics is becoming increasingly limited due to the emergence of bacterial resistance. Designing and developing nanoscale antibacterials is a strategy for effectively addressing the antibiotic crisis. In this work, AgNPs@AMP nanoparticles were synthesized to take advantage of the synergistic antibacterial activity of the (LLRR)

Identifiants

pubmed: 37923918
doi: 10.1007/s11274-023-03792-0
pii: 10.1007/s11274-023-03792-0
doi:

Substances chimiques

Silver 3M4G523W1G
Anti-Bacterial Agents 0
Antimicrobial Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1

Subventions

Organisme : Scientific research fund for key projects of Wannan Medical College
ID : wk2021z20
Organisme : Scientific Research Project of Colleges and Universities in Anhui Province
ID : KJ2021A0840
Organisme : Scientific Research Project of Colleges and Universities in Anhui Province
ID : YJS20210451
Organisme : Scientific Research Project of Colleges and Universities in Anhui Province
ID : KJ2020A0374

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I (2022) Host defence peptides: a potent alternative to combat antimicrobial resistance in the era of the COVID-19 pandemic. Antibiotics 11(4):475. https://doi.org/10.3390/antibiotics11040475
doi: 10.3390/antibiotics11040475 pubmed: 35453226 pmcid: 9032040
Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:9578. https://doi.org/10.1038/srep09578
doi: 10.1038/srep09578 pubmed: 25873247 pmcid: 4397836
Beurton J, Lavalle P, Pallotta A, Chaigneau T, Clarot I, Boudier A (2020) Design of surface ligands for blood compatible gold nanoparticles: effect of charge and binding energy. Int J Pharm 580:119244. https://doi.org/10.1016/j.ijpharm.2020.119244
doi: 10.1016/j.ijpharm.2020.119244 pubmed: 32201250
Braz VS, Melchior K, Moreira CG (2021) Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front Cell Infect Microbiol 10:548492. https://doi.org/10.3389/fcimb.2020.548492
doi: 10.3389/fcimb.2020.548492
Browne K, Chakraborty S, Chen RX, Willcox MD, Black DS, Walsh WR, Kumar N (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21(19):7047. https://doi.org/10.3390/ijms21197047
doi: 10.3390/ijms21197047 pubmed: 32987946 pmcid: 7582481
Cai Z, Dai Q, Guo Y, Wei Y, Wu M, Zhang H (2019) Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int J Biol Macromol 141:422–430. https://doi.org/10.1016/j.ijbiomac.2019.09.018
doi: 10.1016/j.ijbiomac.2019.09.018 pubmed: 31493455
Cao HL, Qin H, Li YS, Jandt KD (2021) The action-networks of nanosilver: bridging the gap between material and biology. Adv Healthcare Mater 10(8):e2100619. https://doi.org/10.1002/adhm.202100619
doi: 10.1002/adhm.202100619
Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R (2019) Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis—a comprehensive review. IET Nanobiotechnol 13(3):243–249. https://doi.org/10.1049/iet-nbt.2018.5184
doi: 10.1049/iet-nbt.2018.5184 pubmed: 31053685 pmcid: 8676648
Dai JH, Liu DF, Chen LJ, Sun LX (2020) Effect of Ag-1031 on apoptosis in gastric cancer AGS cells and its effects on the PI3K/AKT/mTOR signaling pathway. Biotechnol Lett 42(11):2447–2452. https://doi.org/10.1007/s10529-020-02954-6
doi: 10.1007/s10529-020-02954-6 pubmed: 32651704
Del Giudice P (2020) Skin infections caused by Staphylococcus aureus. Acta Derm-Venereol. 100(9):adv00110. https://doi.org/10.2340/00015555-3466
doi: 10.2340/00015555-3466 pubmed: 32207539
Drayton M, Kizhakkedathu JN, Straus SK (2020) Towards robust delivery of antimicrobial peptides to combat bacterial resistance. Molecules 25(13):3048. https://doi.org/10.3390/molecules25133048
doi: 10.3390/molecules25133048 pubmed: 32635310 pmcid: 7412191
Ducarmon QR, Kuijper EdJ, Olle B (2021) Opportunities and challenges in development of live biotherapeutic products to fight infections. J Infect Dis 223(12 Suppl 2):S283–S289. https://doi.org/10.1093/infdis/jiaa779
doi: 10.1093/infdis/jiaa779 pubmed: 33576793
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q (2021) Innate lymphoid cells and natural killer cells in bacterial infections: function, dysregulation, and therapeutic targets. Front Cell Infect Microbiol 11:733564. https://doi.org/10.3389/fcimb.2021.733564
doi: 10.3389/fcimb.2021.733564 pubmed: 34804991 pmcid: 8602108
Fanoro OT, Oluwafemi OS (2020) Bactericidal antibacterial mechanism of plant synthesized silver gold and bimetallic nanoparticles. Pharmaceutics 12(11):1044. https://doi.org/10.3390/pharmaceutics12111044
doi: 10.3390/pharmaceutics12111044 pubmed: 33143388 pmcid: 7693967
Fu W, Shao ZL, Sun XJ, Zhou C, Xu ZP, Zhang Y, Cheng JG, Li Z, Shao XH (2022) Reversible regulation of succinate dehydrogenase by tools of photopharmacology. J Agric Food Chem 70(14):4279–4290. https://doi.org/10.1021/acs.jafc.1c08198
doi: 10.1021/acs.jafc.1c08198 pubmed: 35357145
Gao JY, Na HY, Zhong RB, Yuan M, Guo J, Zhao LJ, Wang Yu, Wang LP, Zhang F (2020) One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf B 186:110704. https://doi.org/10.1016/j.colsurfb.2019.110704
doi: 10.1016/j.colsurfb.2019.110704
Garcia A, Fox JG (2021) A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts. Comp Med 71(1):3–45. https://doi.org/10.30802/AALAS-CM-20-000054
doi: 10.30802/AALAS-CM-20-000054 pubmed: 33419487 pmcid: 7898170
Gomaa EZ (2017) Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria. J Gen Appl Microbiol 63(1):36–43. https://doi.org/10.2323/jgam.2016.07.004
doi: 10.2323/jgam.2016.07.004 pubmed: 28123131
Gomes LC, Mergulhao FJ (2017) SEM analysis of surface impact on biofilm antibiotic treatment. Scanning 2017:2960194. https://doi.org/10.1155/2017/2960194
doi: 10.1155/2017/2960194 pubmed: 29109808 pmcid: 5662067
Haidari H, Bright R, Strudwick XL, Garg S, Vasilev K (2021) Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomate 128:420–434. https://doi.org/10.1016/j.actbio.2021.04.007
doi: 10.1016/j.actbio.2021.04.007
Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, Panáček A (2022) Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol Rev 11(1):1115–1142. https://doi.org/10.1515/ntrev-2022-0059
doi: 10.1515/ntrev-2022-0059
Jiang YJ, Chen YY, Song ZY, Tan ZZ, Cheng JJ (2021) Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Delivery Rev 170:261–280. https://doi.org/10.1016/j.addr.2020.12.016
doi: 10.1016/j.addr.2020.12.016
Jiang WJ, Zhang TT, Wang JW, Cheng W, Lu T, Yan YK, Tang XR (2023) Design, synthesis, inhibitory activity, and molecular modeling of novel pyrazole-furan/thiophene carboxamide hybrids as potential fungicides targeting succinate dehydrogenase. J Agric Food Chem 71(1):729–738. https://doi.org/10.1021/acs.jafc.2c05054
doi: 10.1021/acs.jafc.2c05054 pubmed: 36562616
Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20(1):262. https://doi.org/10.1186/s12951-022-01477-8
doi: 10.1186/s12951-022-01477-8
Keshari A, Srivastava R, Yadav S, Nath G, Gond KK (2020) Synergistic activity of green silver nanoparticles with antibiotics. Nanomed Res J 5:44–54. https://doi.org/10.22034/nmrj.2020.01.006
doi: 10.22034/nmrj.2020.01.006
Lee SH, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865. https://doi.org/10.3390/ijms20040865
doi: 10.3390/ijms20040865 pubmed: 30781560 pmcid: 6412188
Li TT, Liu QW, Chen HT, Li JR (2020a) Antibacterial activity and mechanism of the cell-penetrating peptide CF-14 on the gram-negative bacteria Escherichia coli. Fish Shellfish Immunol 100:489–495. https://doi.org/10.1016/j.fsi.2020.03.038
doi: 10.1016/j.fsi.2020.03.038 pubmed: 32205189
Li WX, Li YC, Sun PC, Zhang N, Zhao YD, Qin SS, Zhao YG (2020b) Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Adv 10(64):38746–38754. https://doi.org/10.1039/d0ra05640e
doi: 10.1039/d0ra05640e pubmed: 35518403 pmcid: 9057333
Li WZ, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu LB, Zhang XG, Tao YG, Zhang WW (2021) The effects of luminescent CdSe quantum dot-functionalized antimicrobial peptides nanoparticles on antibacterial activity and molecular mechanism. Int J Nanomed 16:1849–1867. https://doi.org/10.2147/IJN.S295928
doi: 10.2147/IJN.S295928
Li A, Shi C, Qian S, Wang Z, Zhao SG, Liu Y, Xue ZL (2022) Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability. Microb Pathog 168:105574. https://doi.org/10.1016/j.micpath.2022.105574
doi: 10.1016/j.micpath.2022.105574 pubmed: 35561981
Li GY, Lai ZH, Shan AS (2023) Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections. Adv Sci 10(11):e2206602. https://doi.org/10.1002/advs.202206602
doi: 10.1002/advs.202206602
Luna-Vázquez-Gómez R, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Pestryakov A, Bogdanchikova N (2022) Bell shape curves of hemolysis induced by silver nanoparticles: review and experimental assay. Nanomaterials 12(7):1066. https://doi.org/10.3390/nano12071066
doi: 10.3390/nano12071066 pubmed: 35407184 pmcid: 9000491
Luo Y, Song YZ (2021) Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22(21):11401. https://doi.org/10.3390/ijms222111401
doi: 10.3390/ijms222111401 pubmed: 34768832 pmcid: 8584040
Ma YH, Cai FH, Li YY, Chen JH, Han F, Lin WQ (2020) A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact Mater 5(3):732–743. https://doi.org/10.1016/j.bioactmat.2020.05.002
doi: 10.1016/j.bioactmat.2020.05.002 pubmed: 32596555 pmcid: 7303522
Magda F, Maria O, Marta S, Silva M, Gil S, Tavares L, Aires-da-Silva F, Gaspar MM, Aguiar SI (2021) Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules 26(7):2047. https://doi.org/10.3390/molecules26072047
doi: 10.3390/molecules26072047
Muchintala D, Suresh V, Raju D, Sashidhar RB (2020) Synthesis and characterization of cecropin peptide-based silver nanocomposites: its antibacterial activity and mode of action. Mater Sci Eng C 110:110712. https://doi.org/10.1016/j.msec.2020.110712
doi: 10.1016/j.msec.2020.110712
Neves ACO, Viana Anderson D, Menezes FG, Wanderlei Neto AO, Melo MCN (2021) Biospectroscopy and chemometrics as an analytical tool for comparing the antibacterial mechanism of silver nanoparticles with popular antibiotics against Escherichia coli. Spectrochim Acta Part A 253:119558. https://doi.org/10.1016/j.saa.2021.119558
doi: 10.1016/j.saa.2021.119558
Ni Y, Fan JR, Hu YC (2011) Numerical study of instability of nanofluids: the coagulation effect and sedimentation effect. Nanoscale Res Lett 6(1):183. https://doi.org/10.1186/1556-276X-6-183
doi: 10.1186/1556-276X-6-183 pubmed: 21711686 pmcid: 3211237
Noga M, Milan J, Frydrych A, Jurowski K (2023) Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)-critical review: state of the art. Int J Mol Sci 24(6):5133. https://doi.org/10.3390/ijms24065133
doi: 10.3390/ijms24065133 pubmed: 36982206 pmcid: 10049346
Reichelt S, Gorokhova E (2020) Micro-and nanoplastic exposure effects in microalgae: a meta-analysis of standard growth inhibition tests. Front Env Sci 8:131. https://doi.org/10.3389/fenvs.2020.00131
doi: 10.3389/fenvs.2020.00131
Saebo IP, Bjoras M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Biol Macromol 24(3):2914. https://doi.org/10.3390/ijms24032914
doi: 10.3390/ijms24032914
Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB (2020) The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10(8):1566. https://doi.org/10.3390/nano10081566
doi: 10.3390/nano10081566 pubmed: 32784939 pmcid: 7466543
Schmit T, Klomp M, Khan MN (2021) An overview of flow cytometry: its principles and applications in allergic disease research. Methods Mol Biol 2223:169–182. https://doi.org/10.1007/978-1-0716-1001-5_13
doi: 10.1007/978-1-0716-1001-5_13 pubmed: 33226595
Shailaja A, Bruce TF, Gerard P, Powell RR, Pettigrew CA, Kerrigan JL (2022) Comparison of cell viability assessment and visualization of Aspergillus niger biofilm with two fluorescent probe staining methods. Biofilm 4:100090. https://doi.org/10.1016/j.bioflm.2022.100090
doi: 10.1016/j.bioflm.2022.100090 pubmed: 36389263 pmcid: 9646680
Sun HN, Jiang CJ, Wu L, Zhai SM (2019) Cytotoxicity-related bioeffects induced by nanoparticles: the role of surface chemistry. Front Bioeng Biotech 7:414. https://doi.org/10.3389/fbioe.2019.00414
doi: 10.3389/fbioe.2019.00414
Sun J, Kroeger JL, Markowitz J (2021) Introduction to multiparametric flow cytometry and analysis of high-dimensional Data. Methods Mol Biol 2194:239–253. https://doi.org/10.1007/978-1-0716-0849-4_13
doi: 10.1007/978-1-0716-0849-4_13 pubmed: 32926370 pmcid: 7868168
Takahashi-Iniguez T, Aburto-Rodriguez N, Vilchis-Gonzalez AL, Flores ME (2016) Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase. J Zhejiang Univ Sci B 17(4):247–261. https://doi.org/10.1631/jzus.B1500219
doi: 10.1631/jzus.B1500219 pmcid: 4829630
Todisco S, Convertini P, Iacobazzi V, Infantino V (2019) TCA cycle rewiring as emerging metabolic signature of hepatocellular carcinoma. Cancers 12(1):68. https://doi.org/10.3390/cancers12010068
doi: 10.3390/cancers12010068 pubmed: 31881713 pmcid: 7016696
Tong SYC, Mora J, Bowen AC, Cheng MP, Nick D, Goodman AL (2022) The staphylococcus aureus network adaptive platform trial protocol: new tools for an old foe. Clin Infect Dis 75(11):2027–2034. https://doi.org/10.1093/cid/ciac476
doi: 10.1093/cid/ciac476 pubmed: 35717634 pmcid: 9710697
Vanti GL, Masaphy S, Kurjogi M, Chakrasali S, Nargund VB (2020) Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int J Biol Macromol 156:1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179
doi: 10.1016/j.ijbiomac.2019.11.179 pubmed: 31760011
Wahab MA, Li LM, Li HM, Abdala A (2021) Silver nanoparticle-based nanocomposites for combating infectious pathogens: recent advances and future prospects. Nanomaterials 11(3):581. https://doi.org/10.3390/nano11030581
doi: 10.3390/nano11030581 pubmed: 33652693 pmcid: 7996865
Wang TR, Zou CB, Wen N, Liu XD, Meng Z, Feng SL, Zheng ZB, Meng QB, Wang CH (2021) The effect of structural modification of antimicrobial peptides on their antimicrobial activity, hemolytic activity, and plasma stability. J Pept Sci 27(5):e3306. https://doi.org/10.1002/psc.3306
doi: 10.1002/psc.3306 pubmed: 33554385
Wang R, Li R, Zheng P, Yang Z, Qian C, Wang Z, Qian S (2023) Silver nanoparticles modified with Polygonatum sibiricum polysaccharide improve biocompatibility and infected wound bacteriostasis. J Microbiol 61(5):543–558. https://doi.org/10.1007/s12275-023-00042-8
doi: 10.1007/s12275-023-00042-8 pubmed: 37052796
Wiradharma N, Khoe U, Hauser CAE, Seow SV, Zhang SG (2011) Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 32(8):2204–2212. https://doi.org/10.1016/j.biomaterials.2010.11.054
doi: 10.1016/j.biomaterials.2010.11.054 pubmed: 21168911
Xiong JR, Cai XY, Ge J (2022) Enzyme-metal nanocomposites for antibacterial applications. Particuology 64:134–139. https://doi.org/10.1016/j.partic.2021.02.003
doi: 10.1016/j.partic.2021.02.003
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY (2021) Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 8(1):48. https://doi.org/10.1186/s40779-021-00343-2
doi: 10.1186/s40779-021-00343-2 pubmed: 34496967 pmcid: 8425997
Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X (2022a) Nano silver-induced toxicity and associated mechanisms. Int J Nanomed 17:1851–1864. https://doi.org/10.2147/IJN.S355131
doi: 10.2147/IJN.S355131
Zhang L, Qin M, Yin J, Liu X, Zhou J, Zhu Y, Liu Y (2022b) Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum. J Appl Microbiol 133(4):2642–2654. https://doi.org/10.1111/jam.15733
doi: 10.1111/jam.15733 pubmed: 35892189

Auteurs

Rongyu Li (R)

School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China.

Jiaqing Mao (J)

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.

Peng Zheng (P)

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.

Ruonan Wang (R)

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.

Zicheng Yang (Z)

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.

Senhe Qian (S)

College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. qiansenhe@mail.ahpu.edu.cn.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH