Reference standards for stress radiography measurements in knee ligament injury and instability: a systematic review.
Anterior cruciate ligament
Fibular (lateral) collateral ligament
Knee ligament injury
Medial collateral ligament
Multiligament
Posterior cruciate ligament
Stress radiography
Journal
Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
ISSN: 1433-7347
Titre abrégé: Knee Surg Sports Traumatol Arthrosc
Pays: Germany
ID NLM: 9314730
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
01
08
2023
accepted:
28
09
2023
pubmed:
4
11
2023
medline:
4
11
2023
entrez:
4
11
2023
Statut:
ppublish
Résumé
Stress radiographs are an easily accessible, cost-effective tool in the evaluation of acute and chronic ligament knee injuries. Stress radiographs provide an objective, quantifiable, and functional assessment of the injured ligament and can be a useful adjunct when planning surgical management and to objectively assess postoperative outcomes. This study aimed to review the literature reporting on stress radiographic techniques in evaluating knee ligament injury and instability and propose thresholds for interpreting stress radiography techniques. The following three databases, OVID MEDLINE, the EMBASE library, and the Cochrane Controlled Trials Register, were systematically searched on January 23, 2023, for studies published from January 1970 to January 2023. The search extended to the reference lists of all relevant studies and orthopedic journals. Included studies were those that described a stress technique for the diagnosis of knee ligament injury; studies that reported a description or comparison of the accuracy and/or reliability of one or several stress radiography techniques, or studies that reported a comparison with alternative diagnostic modalities. Sixteen stress radiography techniques were reported for assessing the ACL with stress applied in the anterior plane, 10 techniques for assessing the PCL with stress applied in the posterior plane, 3 techniques for valgus stress, and 4 techniques for varus stress. The Telos device was the most commonly used stress device in the ACL and PCL studies. There was no consensus on the accuracy and reliability of stress radiography techniques for the diagnosis of any knee ligament injury. Stress radiography techniques were compared with alternative diagnostic techniques including instrumented arthrometry, MRI, and physical examination in 18 studies, with variability in the advantages and disadvantages of stress radiography techniques and alternatives. Analysis of results pooled from different studies demonstrated average delta gapping in knees with a completely injured ligament compared to the normal contralateral knee as per the following: for the ACL 4.9 ± 1.4 mm; PCL 8.1 ± 2.5 mm; MCL 2.3 ± 0.05 mm; and the FCL 3.4 ± 0.2 mm. Despite heterogeneity in the available literature with regard to stress examination techniques and device utilization, the data support that stress radiography techniques were accurate and reliable when compared to numerous alternatives in the diagnosis of acute and chronic knee ligament injuries. The present study also provides average increased ipsilateral compartment gapping/translation for specific knee ligament injuries based on the best available data. These values provide a reference standard for the interpretation of stress radiography techniques, help to guide surgical decision-making, and provide benchmark values for future investigations. III.
Identifiants
pubmed: 37923947
doi: 10.1007/s00167-023-07617-3
pii: 10.1007/s00167-023-07617-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
5721-5746Informations de copyright
© 2023. The Author(s) under exclusive licence to European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA).
Références
Beldame J, Bertiaux S, Roussignol X, Lefebvre B, Adam J-M, Mouilhade F, Dujardin F (2011) Laxity measurements using stress radiography to assess anterior cruciate ligament tears. Orthop Traumatol Surg Res 97(1):34–43
pubmed: 21169080
Beldame J, Mouchel S, Bertiaux S, Adam J-M, Mouilhade F, Roussignol X, Dujardin F (2012) Anterior knee laxity measurement: comparison of passive stress radiographs Telos(®) and “Lerat”, and GNRB(®) arthrometer. Orthop Traumatol Surg Res 98(7):744–750
pubmed: 23084264
Billières J, Labruyère C, Steltzlen C, Gonzalez A, Boisrenoult P, Beaufils P, Pujol N (2020) Multiligament knee injuries treated by one-stage reconstruction using allograft: postoperative laxity assessment using stress radiography and clinical outcomes. Orthop Traumatol Surg Res 106(5):937–944
pubmed: 31494067
Dejour D, Ntagiopoulos PG, Saggin PR, Panisset J-C (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29(3):491–499
pubmed: 23343713
Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Jt Surg Br 76(5):745–749
Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43(5):371–376
pubmed: 19224907
Franklin JL, Rosenberg TD, Paulos LE, France EP (1991) Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. A quadriceps-contraction technique. J Bone Jt Surg Am 73(3):365–372
Garavaglia G, Lubbeke A, Dubois-Ferrière V, Suva D, Fritschy D, Menetrey J (2007) Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med 35(12):2051–2056
pubmed: 17885222
Garcés GL, Perdomo E, Guerra A, Cabrera-Bonilla R (1995) Stress radiography in the diagnosis of anterior cruciate ligament deficiency. Int Orthop 19(2):86–88
pubmed: 7649690
Garofalo R, Fanelli GC, Cikes A, N’Dele D, Kombot C, Mariani PP, Mouhsine E (2009) Stress radiography and posterior pathological laxity of knee: comparison between two different techniques. Knee 16(4):251–255
pubmed: 19167230
Granberry WM, Noble PC, Woods GW (1990) Evaluation of an electrogoniometric instrument for measurement of laxity of the knee. J Bone Jt Surg Am 72(9):1316–1322
Gursoy S, Perry AK, Dandu N, Singh H, Vadhera AS, Yanke A, LaPrade RF, Chahla J (2022) Effect of sectioning of the anterior cruciate ligament and posterolateral structures on lateral compartment gapping: a randomized biomechanical study. Orthop J Sports Med 10(6):23259671221100216
pubmed: 35693457
pmcid: 9178986
Gwathmey FW, Tompkins MA, Gaskin CM, Miller MD (2012) Can stress radiography of the knee help characterize posterolateral corner injury? Clin Orthop Relat Res 470(3):768–773
pubmed: 21822568
Harilainen A, Myllynen P, Rauste J, Silvennoinen E (1986) Diagnosis of acute knee ligament injuries: the value of stress radiography compared with clinical examination, stability under anaesthesia and arthroscopic or operative findings. Ann Chir Gynaecol 75(1):37–43
pubmed: 3707024
Hewett TE, Noyes FR, Lee MD (1997) Diagnosis of complete and partial posterior cruciate ligament ruptures. Stress radiography compared with KT-1000 arthrometer and posterior drawer testing. Am J Sports Med 25(5):648–655
pubmed: 9302470
Höher J, Akoto R, Helm P, Shafizadeh S, Bouillon B, Balke M (2015) Rolimeter measurements are suitable as substitutes to stress radiographs in the evaluation of posterior knee laxity. Knee Surg Sports Traumatol Arthrosc 23(4):1107–1112
pubmed: 24562696
Holliday CL, Martin R, Grant JA (2021) Comparing the efficacy of kneeling stress radiographs and weighted gravity stress radiographs to assess posterior cruciate ligament insufficiency. Am J Sports Med 49(4):1017–1022
pubmed: 33599526
Hooper GJ (1986) Radiological assessment of anterior cruciate ligament deficiency. A new technique. J Bone Jt Surg Br 68(2):292–296
Jackman T, LaPrade RF, Pontinen T, Lender PA (2008) Intraobserver and interobserver reliability of the kneeling technique of stress radiography for the evaluation of posterior knee laxity. Am J Sports Med 36(8):1571–1576
pubmed: 18448580
Jacobsen K (1977) Stress radiographical measurements of post-traumatic knee instability. A clinical study. Acta Orthop Scand 48(3):301–310
pubmed: 920123
Jacobsen K (1976) Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand 47(3):335–344
pubmed: 952223
Jacobsen K (1981) Gonylaxometry. Stress radiographic measurement of passive stability in the knee joints of normal subjects and patients with ligament injuries. Accuracy and range of application. Acta Orthop Scand Suppl 194:1–263
pubmed: 6945792
Jacobsen K, Rosenkilde P (1977) A clinical and stress radiographical follow-up investigation after Jones’ operation for replacing the anterior cruciate ligament. Injury 8(3):221–226
pubmed: 881255
James EW, Williams BT, LaPrade RF (2014) Stress radiography for the diagnosis of knee ligament injuries: a systematic review. Clin Orthop Relat Res 472(9):2644–2657
pubmed: 24504647
pmcid: 4117881
Jung TM, Reinhardt C, Scheffler SU, Weiler A (2006) Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc 14(11):1116–1121
pubmed: 16799824
Jenny J-Y, Arndt J (2013) Anterior knee laxity measurement using stress radiographs and the GNRB(®) system versus intraoperative navigation. Orthop Traumatol Surg Res OTSRDOI. https://doi.org/10.1016/j.otsr.2013.07.008
doi: 10.1016/j.otsr.2013.07.008
Kane PW, Cinque ME, Moatshe G, Chahla J, DePhillipo NN, Provencher MT, LaPrade RF (2018) Fibular collateral ligament: varus stress radiographic analysis using 3 different clinical techniques. Orthop J Sports Med 6(5):2325967118770170
pubmed: 29770342
pmcid: 5946641
Kane PW, DePhillipo NN, Cinque ME, Moatshe G, Chahla J, Carpenter E, Provencher MT, LaPrade RF (2018) Increased accuracy of varus stress radiographs versus magnetic resonance imaging in diagnosing fibular collateral ligament grade III tears. Arthroscopy 34(7):2230–2235
pubmed: 29884567
Kang K-T, Kim S-H, Son J, Lee YH, Koh Y-G (2017) Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography. Biomed Mater Eng 28(4):417–429
pubmed: 28869432
Kim S-G, Kim S-H, Choi W-S, Bae J-H (2019) Supine lateral radiographs at 90° of knee flexion have a similar diagnostic accuracy for chronic posterior cruciate ligament injuries as stress radiographs. Knee Surg Sports Traumatol Arthrosc 27(8):2433–2439
pubmed: 30361755
Laprade RF, Bernhardson AS, Griffith CJ, Macalena JA, Wijdicks CA (2010) Correlation of valgus stress radiographs with medial knee ligament injuries: an in vitro biomechanical study. Am J Sports Med 38(2):330–338
pubmed: 19966093
LaPrade RF, Heikes C, Bakker AJ, Jakobsen RB (2008) The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries. An in vitro biomechanical study. J Bone Jt Surg Am 90(10):2069–2076
Lee YS, Han SH, Jo J, Kwak K-S, Nha KW, Kim JH (2011) Comparison of 5 different methods for measuring stress radiographs to improve reproducibility during the evaluation of knee instability. Am J Sports Med 39(6):1275–1281
pubmed: 21350067
Lerat JL, Moyen B, Jenny JY, Perrier JP (1993) A comparison of pre-operative evaluation of anterior knee laxity by dynamic X-rays and by the arthrometer KT 1000. Knee Surg Sports Traumatol Arthrosc 1(1):54–59
pubmed: 8535999
Lerat JL, Moyen BL, Cladière F, Besse JL, Abidi H (2000) Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Jt Surg Br 82(1):42–47
Mae T, Shino K, Hiramatsu K, Tachibana Y, Nakagawa S, Yoshikawa H (2018) Anterior laxity of the knee assessed with gravity stress radiograph. Skeletal Radiol 47(10):1349–1355
pubmed: 29656302
Margheritini F, Mancini L, Mauro CS, Mariani PP (2003) Stress radiography for quantifying posterior cruciate ligament deficiency. Arthroscopy 19(7):706–711
pubmed: 12966377
McDonald LS, Waltz RA, Carney JR, Dewing CB, Lynch JR, Asher DB, Schuett DJ, LeClere LE (2016) Validation of varus stress radiographs for anterior cruciate ligament and posterolateral corner knee injuries: a biomechanical study. Knee 23(6):1064–1068
pubmed: 27806878
McPhee IB, Fraser JG (1981) Stress radiography in acute ligamentous injuries of the knee. Injury 12(5):383–388
pubmed: 7263046
Milano G, Colosio A, Scaini A, Motta M, Raggi A, Zanoni F, Galli S, Saccomanno MF (2022) A new knee arthrometer demonstrated to be reliable and accurate to assess anterior tibial translation in comparison with stress radiographs. Arch Orthop Trauma SurgDOI. https://doi.org/10.1007/s00402-022-04679-9
doi: 10.1007/s00402-022-04679-9
Noh JH, Nam WD, Roh YH (2019) Anterior tibial displacement on preoperative stress radiography of ACL-injured knee depending on knee flexion angle. Knee Surg Relat Res 31(1):14
pubmed: 32660620
pmcid: 7219608
Panisset J-C, Ntagiopoulos P-G, Saggin PR, Dejour D (2012) A comparison of Telos™ stress radiography versus Rolimeter™ in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res 98(7):751–758
pubmed: 23063311
Rijke AM, Goitz HT, McCue FC, Delp JL, Lam D, Port Southall E (1991) Graded stress radiography of injured anterior cruciate ligaments. Invest Radiol 26(11):926–933
pubmed: 1743915
Rijke AM, Tegtmeyer CJ, Weiland DJ, McCue FC (1987) Stress examination of the cruciate ligaments: a radiologic Lachman test. Radiology 165(3):867–869
pubmed: 3685366
Ryu DJ, Kwon KB, Jung EY, Lee S-S, Kim JH, Jang MC, Wang JH (2021) Clinically reliable knee flexion angle measured on stress radiography for quantifying posterior instability in posterior cruciate ligament injury. Orthop J Sports Med 9(3):2325967121989252
pubmed: 34104655
pmcid: 8172336
Sawant M, Narasimha Murty A, Ireland J (2004) Valgus knee injuries: evaluation and documentation using a simple technique of stress radiography. Knee 11(1):25–28
pubmed: 14967324
Schulz MS, Russe K, Lampakis G, Strobel MJ (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33(4):502–506
pubmed: 15722285
Schulz MS, Steenlage ES, Russe K, Strobel MJ (2007) Distribution of posterior tibial displacement in knees with posterior cruciate ligament tears. J Bone Jt Surg Am 89(2):332–338
Sekiya JK, Whiddon DR, Zehms CT, Miller MD (2008) A clinically relevant assessment of posterior cruciate ligament and posterolateral corner injuries. Evaluation of isolated and combined deficiency. J Bone Jt Surg Am 90(8):1621–1627
Severyns M, Rollet M-E, Vendeuvre T, Pesenti S, Benzakour A, Rouvillain J-L (2021) Experimental validation of a new technique for the assessment of posterior tibial translation (ABC angle) after posterior cruciate ligament rupture. J Exp Orthop 8(1):72. https://doi.org/10.1186/s40634-021-00395-2
doi: 10.1186/s40634-021-00395-2
pubmed: 34476618
pmcid: 8413433
Srisuwanporn P, Wachiratarapadorn S, Panyasakulwong R, Thuntong B, Cheecharern S, Precha W (2016) Accuracy of a new stress radiographic device in diagnosing anterior cruciate ligament tear. J Med Assoc Thai 99(4):394–399
pubmed: 27396223
Staeubli HU, Jakob RP, Noesberger B (1985) Anterior-posterior knee instability and stress radiography a prospective biomechanical analysis with the knee in extension. In: Perren SM, Schneider E (eds) Biomechanics: current interdisciplinary research. Springer, Dordrecht, pp 397–402
Stäubli HU, Jakob RP (1990) Posterior instability of the knee near extension. A clinical and stress radiographic analysis of acute injuries of the posterior cruciate ligament. J Bone Jt Surg Br 72(2):225–230
Stäubli HU, Jakob RP (1991) Anterior knee motion analysis. Measurement and simultaneous radiography. Am J Sports Med 19(2):172–177
pubmed: 2039069
Stäubli HU, Noesberger B, Jakob RP (1992) Stressradiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop Scand Suppl 249:1–27
pubmed: 1529706
Torzilli PA, Greenberg RL, Hood RW, Pavlov H, Insall JN (1984) Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. J Bone Jt Surg Am 66(9):1438–1442
Wirz P, von Stokar P, Jakob RP (2000) The effect of knee position on the reproducibility of measurements taken from stress films: a comparison of four measurement methods. Knee Surg Sports Traumatol Arthrosc 8(3):143–148
pubmed: 10883424