MRI radiomics may predict early tumor recurrence in patients with sinonasal squamous cell carcinoma.

Magnetic resonance imaging Prognosis Radiomics Squamous cell carcinoma

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
06 Nov 2023
Historique:
received: 15 11 2022
accepted: 07 09 2023
revised: 28 08 2023
medline: 6 11 2023
pubmed: 6 11 2023
entrez: 5 11 2023
Statut: aheadofprint

Résumé

Sinonasal squamous cell carcinoma (SCC) follows a poor prognosis with high tendency for local recurrence. We aimed to evaluate whether MRI radiomics can predict early local failure in sinonasal SCC. Sixty-eight consecutive patients with node-negative sinonasal SCC (January 2005-December 2020) were enrolled, allocated to the training (n = 47) and test sets (n = 21). Early local failure, which occurred within 12 months of completion of initial treatment, was the primary endpoint. For clinical features (age, location, treatment modality, and clinical T stage), binary logistic regression analysis was performed. For 186 extracted radiomic features, different feature selections and classifiers were combined to create two prediction models: (1) a pure radiomics model; and (2) a combined model with clinical features and radiomics. The areas under the receiver operating characteristic curves (AUCs) were calculated and compared using DeLong's method. Early local failure occurred in 38.3% (18/47) and 23.8% (5/21) in the training and test sets, respectively. We identified several radiomic features which were strongly associated with early local failure. In the test set, both the best-performing radiomics model and the combined model (clinical + radiomic features) yielded higher AUCs compared to the clinical model (AUC, 0.838 vs. 0.438, p = 0.020; 0.850 vs. 0.438, p = 0.016, respectively). The performances of the best-performing radiomics model and the combined model did not differ significantly (AUC, 0.838 vs. 0.850, p = 0.904). MRI radiomics integrated with a machine learning classifier may predict early local failure in patients with sinonasal SCC. MRI radiomics intergrated with machine learning classifiers may predict early local failure in sinonasal squamous cell carcinomas more accurately than the clinical model. • A subset of radiomic features which showed significant association with early local failure in patients with sinonasal squamous cell carcinomas was identified. • MRI radiomics integrated with machine learning classifiers can predict early local failure with high accuracy, which was validated in the test set (area under the curve = 0.838). • The combined clinical and radiomics model yielded superior performance for early local failure prediction compared to that of the radiomics (area under the curve 0.850 vs. 0.838 in the test set), without a statistically significant difference.

Identifiants

pubmed: 37926740
doi: 10.1007/s00330-023-10389-6
pii: 10.1007/s00330-023-10389-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Research Foundation of Korea (NRF)
ID : 2019R1A2C1008409
Organisme : National Research Foundation of Korea (NRF)
ID : 2021R1A2C1010900
Organisme : faculty research grant conferred by Yonsei University College of Medicine
ID : 6-2020-0115

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Society of Radiology.

Références

Dulguerov P, Jacobsen MS, Allal AS, Lehmann W, Calcaterra T (2001) Nasal and paranasal sinus carcinoma: are we making progress? A series of 220 patients and a systematic review. Cancer 92:3012–3029
doi: 10.1002/1097-0142(20011215)92:12<3012::AID-CNCR10131>3.0.CO;2-E pubmed: 11753979
Youlden DR, Cramb SM, Peters S et al (2013) International comparisons of the incidence and mortality of sinonasal cancer. Cancer Epidemiology 37:770–779
doi: 10.1016/j.canep.2013.09.014 pubmed: 24138871
Cantù G, Bimbi G, Miceli R et al (2008) Lymph node metastases in malignant tumors of the paranasal sinuses: prognostic value and treatment. Arch Otolaryngol Head Neck Surg 134:170–177
doi: 10.1001/archoto.2007.30 pubmed: 18283160
Bhattacharyya N (2003) Factors affecting survival in maxillary sinus cancer. J Oral Maxillofac Surg 61:1016–1021
doi: 10.1016/S0278-2391(03)00313-6 pubmed: 12966476
Ganly I, Patel SG, Singh B et al (2005) Craniofacial resection for malignant paranasal sinus tumors: report of an International Collaborative Study. Head Neck 27:575–584
doi: 10.1002/hed.20165 pubmed: 15825201
Al-Qurayshi Z, Smith R, Walsh JE (2020) Sinonasal squamous cell carcinoma presentation and outcome: a national perspective. Annals Otol Rhinol Laryngol 129:1049–1055
doi: 10.1177/0003489420929048
Robbins KT, Ferlito A, Silver CE et al (2011) Contemporary management of sinonasal cancer. Head Neck 33:1352–1365
doi: 10.1002/hed.21515 pubmed: 20737500
Hoppe BS, Stegman LD, Zelefsky MJ et al (2007) Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting–the MSKCC experience. Int J Radiat Oncol Biol Phys 67:691–702
doi: 10.1016/j.ijrobp.2006.09.023 pubmed: 17161557
Daly ME, Chen AM, Bucci MK et al (2007) Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses. Int J Radiat Oncol Biol Phys 67:151–157
doi: 10.1016/j.ijrobp.2006.07.1389 pubmed: 17189068
Duru Birgi S, Teo M, Dyker KE, Sen M, Prestwich RJ (2015) Definitive and adjuvant radiotherapy for sinonasal squamous cell carcinomas: a single institutional experience. Radiat Oncol 10:190
doi: 10.1186/s13014-015-0496-3 pubmed: 26377408 pmcid: 4574072
Wiegner EA, Daly ME, Murphy JD et al (2012) Intensity-modulated radiotherapy for tumors of the nasal cavity and paranasal sinuses: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 83:243–251
doi: 10.1016/j.ijrobp.2011.05.044 pubmed: 22019239
Abu-Ghanem S, Horowitz G, Abergel A et al (2015) Elective neck irradiation versus observation in squamous cell carcinoma of the maxillary sinus with N0 neck: a meta-analysis and review of the literature. Head Neck 37:1823–1828
doi: 10.1002/hed.23791 pubmed: 24913744
Galloni C, Locatello LG, Bruno C, Cannavicci A, Maggiore G, Gallo O (2021) The role of elective neck treatment in the management of sinonasal carcinomas: a systematic review of the literature and a meta-analysis. Cancers (Basel) 13(8):1842
doi: 10.3390/cancers13081842 pubmed: 33924359
Patel SH, Wang Z, Wong WW et al (2014) Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a systematic review and meta-analysis. Lancet Oncol 15:1027–1038
doi: 10.1016/S1470-2045(14)70268-2 pubmed: 24980873
Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Comm 5:4006
doi: 10.1038/ncomms5006
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577
doi: 10.1148/radiol.2015151169 pubmed: 26579733
Molina D, Pérez-Beteta J, Martínez-González A et al (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57
doi: 10.1016/j.compbiomed.2016.09.011 pubmed: 27658261
Haider SP, Burtness B, Yarbrough WG, Payabvash S (2020) Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas. Cancers Head Neck 5:6
doi: 10.1186/s41199-020-00053-7 pubmed: 32391171 pmcid: 7197186
Wang X, Dai S, Wang Q, Chai X, Xian J (2021) Investigation of MRI-based radiomics model in differentiation between sinonasal primary lymphomas and squamous cell carcinomas. Jpn J Radiol 39:755–762
doi: 10.1007/s11604-021-01116-6 pubmed: 33860416
Bi SC, Zhang H, Wang HX et al (2021) Radiomics nomograms based on multi-parametric MRI for preoperative differential diagnosis of malignant and benign sinonasal tumors: a two-centre study. Front Oncol 11:659905
doi: 10.3389/fonc.2021.659905 pubmed: 34012922 pmcid: 8127839
Zhang H, Wang H, Hao D et al (2021) An MRI-based radiomic nomogram for discrimination between malignant and benign sinonasal tumors. J Magn Reson Imaging 53:141–151
doi: 10.1002/jmri.27298 pubmed: 32776393
Amin MBES, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR et al (2017) AJCC cancer staging manual, 8th edn. American Joint Commission on Cancer, Springer International Publishing
doi: 10.1007/978-3-319-40618-3
Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320
doi: 10.1109/TMI.2010.2046908 pubmed: 20378467 pmcid: 3071855
Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97
doi: 10.1109/42.668698 pubmed: 9617910
Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19
doi: 10.1016/j.nicl.2014.08.008 pubmed: 25379412 pmcid: 4215426
van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107
doi: 10.1158/0008-5472.CAN-17-0339 pubmed: 29092951 pmcid: 5672828
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22
doi: 10.18637/jss.v033.i01 pubmed: 20808728 pmcid: 2929880
Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46
doi: 10.1111/j.1600-0587.2012.07348.x
Kuhn M (2008) Building Predictive Models in R Using the caret Package. 2008 28:26 %. J Stat Soft
Park JE, Han K, Sung YS et al (2017) Selection and reporting of statistical methods to assess reliability of a diagnostic test: conformity to recommended methods in a peer-reviewed journal. Korean J Radiol 18:888–897
doi: 10.3348/kjr.2017.18.6.888 pubmed: 29089821 pmcid: 5639154
Park JE, Park SY, Kim HJ, Kim HS (2019) Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 20:1124–1137
doi: 10.3348/kjr.2018.0070 pubmed: 31270976 pmcid: 6609433
Xue C, Yuan J, Lo GG et al (2021) Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 11:4431–4460
doi: 10.21037/qims-21-86 pubmed: 34603997 pmcid: 8408801
Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary imbalanced learning. The R Journal 6(1):79–89
doi: 10.32614/RJ-2014-008
DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845
doi: 10.2307/2531595 pubmed: 3203132
Sohn B, Choi YS, Ahn SS et al (2021) Machine learning based radiomic HPV phenotyping of oropharyngeal SCC: a feasibility study using MRI. Laryngoscope 131:E851-e856
doi: 10.1002/lary.28889 pubmed: 33070337
Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer research 77:e104–e107
doi: 10.1158/0008-5472.CAN-17-0339 pubmed: 29092951 pmcid: 5672828
Mayerhoefer ME, Materka A, Langs G et al (2020) Introduction to radiomics. J Nucl Med 61:488–495
doi: 10.2967/jnumed.118.222893 pubmed: 32060219 pmcid: 9374044
Caudell JJ, Gillison ML, Maghami E et al (2022) NCCN Guidelines® insights: head and neck cancers, version 1.2022. J Natl Compr Canc Netw 20:224–234
doi: 10.6004/jnccn.2022.0016 pubmed: 35276673
Le QT, Fu KK, Kaplan MJ, Terris DJ, Fee WE, Goffinet DR (2000) Lymph node metastasis in maxillary sinus carcinoma. Int J Radiat Oncol Biol Phys 46:541–549
doi: 10.1016/S0360-3016(99)00453-8 pubmed: 10701732
Kim GE, Chung EJ, Lim JJ et al (1999) Clinical significance of neck node metastasis in squamous cell carcinoma of the maxillary antrum. Am J Otolaryngol 20:383–390
doi: 10.1016/S0196-0709(99)90078-9 pubmed: 10609483
Sharma A, Tang AL, Takiar V, Wise-Draper TM, Langevin SM (2021) Human papillomavirus and survival of sinonasal squamous cell carcinoma patients: a systematic review and meta-analysis. Cancers (Basel) 13(15):3677
doi: 10.3390/cancers13153677 pubmed: 34359578

Auteurs

Chae Jung Park (CJ)

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

Seo Hee Choi (SH)

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Dain Kim (D)

Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Republic of Korea.

Si Been Kim (SB)

Undergraduate School of Biomedical Engineering, Korea University College of Health Science, Seoul, Republic of Korea.

Kyunghwa Han (K)

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.

Sung Soo Ahn (SS)

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.

Won Hee Lee (WH)

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Eun Chang Choi (EC)

Department of Otorhinolaryngology, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

Ki Chang Keum (KC)

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Jinna Kim (J)

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. jinna@yuhs.ac.

Classifications MeSH