Efficient Assessment of 'Instantaneous pK' Values from Molecular Dynamics Simulations.

crystal dissociation molecular simulation pK prediction precipitate-solvent interfaces solute aggregates

Journal

Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211

Informations de publication

Date de publication:
05 Nov 2023
Historique:
revised: 30 10 2023
received: 12 07 2023
pubmed: 6 11 2023
medline: 6 11 2023
entrez: 6 11 2023
Statut: aheadofprint

Résumé

We present a molecular simulation approach to studying the role of local and momentary molecular environment for potential acid-base reactions. For this, we combine thermodynamic considerations on the pK of ionic species with rapid sampling of energy changes related to (de)protonation. Using dispersed carbonate ions in water as a reference, our approach aims at the fast assessment of the momentary protonation energy, and thus the 'instantaneous pK', of calcium-carbonate ion aggregates. The latter include transient complexes that are elusive to long sampling runs. This motivated the elaboration of approximate, yet particularly fast assessable sampling strategies. Along this line, we were able to characterize instantaneous pK values at a statistical accuracy of 0.4 pK units within sampling runs of only 10 ps duration, whereas statistical errors reduce to 0.1 pK units in 75 ps sampling runs, respectively. This readily enabled the required time resolution for the characterization of [Ca

Identifiants

pubmed: 37927201
doi: 10.1002/cphc.202300489
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300489

Subventions

Organisme : Procter & Gamble Inc.
Organisme : Deutsche Forschungsgemeinschaft
ID : ZA 420/14-1

Informations de copyright

© 2023 The Authors. ChemPhysChem published by Wiley-VCH GmbH.

Références

O. Sulpis, P. Agrawal, M. Wolthers, G. Munhoven, M. Walker, J. J. Middelburg, Nat. Commun. 2022, 13, 1104.
S. Morr, E. Cuartas, B. Alwattar, J. M. Lane, HSS J. 2006, 2, 130-135.
Erlangen Tap Water Analyses. (Stadtwerke Erlangen, 2022) www.estw.de/de/Energie-Wasser/Wasser/Trinkwasserqualitaet.
S. Murakami, Y. Goto, K. Ito, S. Hayasaka, S. Kurihara, T. Soga, M. Tomita, S. Fukuda, Evid-Based Compl. Alt. 2015, 2015, 824395.
I. Rosborg, F. Kozisek, Drinking water minerals and mineral balance, Springer, Basel 2016, ISBN 978-3-319-35784-3.
D. Gebauer, A. Volkel, H. Coelfen, Science 2008, 322, 1819-1822.
R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley, D. Gebauer, Nat. Commun. 2011, 2, 590.
J. H. Cartwright, A. G. Checa, J. D. Gale, D. Gebauer, C. I. Sainz-Díaz, Angew. Chem. Int. Ed. 2012, 51, 11960-11970.
A. F. Wallace, L. O. Hedges, A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfield, J. J. De Yoreo, Science 2013, 341, 885-889.
E. M. Pouget, P. H. Bomans, J. A. Goos, P. M. Frederik, G. de With, N. A. Sommerdijk, Science 2009, 323, 1455-1458.
K. Henzler, E. O. Fetisov, M. Galib, M. D. Baer, B. A. Legg, C. Borca, J. M. Xto, S. Pin, J. L. Fulton, G. K. Schenter, Sci. Adv. 2018, 4, eaao6283.
D. Zahn, Chem. Phys. Lett. 2017, 682, 55-59.
D. Zahn, RSC Adv. 2017, 7, 54063-54067.
G. Li, Q. Cui, J. Phys. Chem. 2003, 107, 14521.
J. R. Pliego Jr., Chem. Phys. Lett. 2003, 367, 145-149.
J. T. Hynes, Nature 1999, 397, 565-567.
H. H. Damkier, K. Josephsen, Y. Takano, D. Zahn, O. Fejerskov, S. Frische, Bone 2014, 60, 227-234.
P. Raiteri, A. Schuitemaker, J. D. Gale, J. Phys. Chem. B. 2020, 124, 3568-3582.
Y. C. Huang, A. Rao, S. J. Huang, C. Y. Chang, M. Drechsler, J. Knaus, J. C. C. Chan, P. Raiteri, J. D. Gale, D. Gebauer, Angew. Chem. Int. Ed. 2021, 60, 16707-16713.
S. Plimpton, J. Phys. Chem. 1995, 117, 1-19.
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, Comput. Phys. Commun. 2022, 271, 108171.
P. Raiteri, J. D. Gale, J. Am. Chem. Soc. 2010, 132, 17623-17634.
Y. Wu, H. L. Tepper, G. A. Voth, J. Chem. Phys. 2006, 124, 024503.
D. Zahn, B. Schilling, S. M. Kast, J. Phys. Chem. 2002, 106, 10725-10732.
C. J. Fennell, J. D. Gezelter, J. Chem. Phys. 2006, 124, 234104.
X.-B. Wang, S. S. Xantheas, J. Phys. Chem. Lett. 2011, 2, 1204-1210.
S. Hofmann, K. Voïtchovsky, P. Spijker, M. Schmidt, T. Stumpf, Sci. Rep. 2016, 6, 1-11.
H. Söngen, S. J. Schlegel, Y. Morais Jaques, J. Tracey, S. Hosseinpour, D. Hwang, R. Bechstein, M. Bonn, A. S. Foster, A. Kühnle, J. Phys. Chem. Lett. 2021, 12, 7605-7611.
J. Aufort, A. Schuitemaker, R. Green, R. Demichelis, P. Raiteri, J. D. Gale, Cryst. Growth Des. 2022, 22, 1445-1458.
R. Eriksson, J. Merta, J. B. Rosenholm, J. Colloid Interface Sci. 2007, 313, 184-193.
R. Eriksson, J. Merta, J. B. Rosenholm, J. Colloid Interface Sci. 2008, 326, 396-402.
P. Duchstein, P. I. Schodder, S. Leupold, T. Q. Dao, S. Kababya, M. R. Cicconi, D. de Ligny, V. Pipich, D. Eike, A. Schmidt, D. Zahn, S. Wolf, Angew. Chem. Int. Ed. 2022, 61, e202208475.
M. P. Andersson, J. D. Rodriquez-Blanco, S. L. S. Stipp, Geochim. Cosmochim. Acta 2016, 176, 198-205.
G. C. Shields, P. G. Seybold, Computational Approaches for the Prediction of pKa Values, CRC Press, Boca Raton, 2014, ISBN 9781138199910.
J. R. Pliego, Chem. Phys. Lett. 2003, 367, 145-149.
D. M. Philipp, M. A. Watson, H. S. Yu, T. B. Steinbrecher, A. D. Bochevarov, Int. J. Quantum Chem. 2018, 118, e25561.
P. Pracht, R. Wilcken, A. Udvarhelyi, S. Rodde, S. Grimme, J. Comput.-Aided Mol. Des. 2018, 32, 1139-1149.
K. C. Gross, P. G. Seybold, C. M. Hadad, Int. J. Quantum Chem. 2002, 90, 445-458.
R. S. Varekova, S. Geidl, C. M. Ionescu, O. Skrehota, T. Bouchal, D. Sehnal, R. Abagyan, J. Koca, J. Cheminf. 2013, 5, 18.
L. Xing, R. C. Glen, R. D. Clark, J. Chem. Inf. Comput. Sci. 2003, 43, 870-879.
F. Milletti, L. Storchi, G. Sforna, G. Cruciani, J. Chem. Inf. Model. 2007, 47, 2172-2181.
S. Pahari, L. Sun, S. Basu, E. Alexov, Proteins Struct. Funct. Bioinf. 2018, 86, 1277-1283.
M. H. M. Olsson, C. R. Søndergaard, M. Rostkowski, J. H. Jensen, J. Chem. Theory Comput. 2011, 7, 525-527.
Y. Huang, W. Chen, J. A. Wallace, J. Shen, J. Chem. Theory Comput. 2016, 12, 5411-5421.
N. Aho, P. Buslaev, A. Jansen, P. Bauer, G. Groenhof, B. Hess, J. Chem. Theory Comput. 2022, 18, 6148-6160.
Z. Cai, F. Luo, Y. Wang, E. Li, Y. Huang, ACS Omega 2021, 6, 34823-34831.

Auteurs

Patrick Duchstein (P)

Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany.

Felix Löffler (F)

Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany.

Dirk Zahn (D)

Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany.

Classifications MeSH