Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells.
Siglec-8
cell death
cis ligand
eosinophil
mast cell
sialic acid
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2023
2023
Historique:
received:
25
08
2023
accepted:
06
10
2023
medline:
7
11
2023
pubmed:
6
11
2023
entrez:
6
11
2023
Statut:
epublish
Résumé
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Identifiants
pubmed: 37928558
doi: 10.3389/fimmu.2023.1283370
pmc: PMC10623328
doi:
Substances chimiques
Ligands
0
Reactive Oxygen Species
0
Interleukin-5
0
Antigens, CD
0
Sialic Acid Binding Immunoglobulin-like Lectins
0
Cytokines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1283370Subventions
Organisme : NIAID NIH HHS
ID : U19 AI136443
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI070535
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL107151
Pays : United States
Informations de copyright
Copyright © 2023 Cao, Rische, Bochner and O’Sullivan.
Déclaration de conflit d'intérêts
Author BB receives remuneration for serving on the scientific advisory board of Allakos, Inc. and owns stock in Allakos. He has served as a consultant for GSK, Third Harmonic Bio, Lupagen, Acelyrin, and Sanofi/Regeneron, and receives publication-related royalty payments from Elsevier and UpToDate®. He is a co-inventor on existing Siglec-8–related patents and thus may be entitled to a share of royalties received by Johns Hopkins University during development and potential sales of such products. Author BB is also a co-founder of Allakos, which makes him subject to certain restrictions under University policy. The terms of this arrangement are being managed by Johns Hopkins University and Northwestern University in accordance with their conflict of interest policies. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Leukoc Biol. 2011 Aug;90(2):313-21
pubmed: 21551251
Eur Respir Rev. 2022 Jan 25;31(163):
pubmed: 35082127
J Biol Chem. 1997 Jan 10;272(2):1248-55
pubmed: 8995428
Front Immunol. 2022 Jan 28;13:833728
pubmed: 35154156
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17):
pubmed: 33893239
J Biol Chem. 2000 Jan 14;275(2):861-6
pubmed: 10625619
Front Immunol. 2019 Mar 15;10:468
pubmed: 30930902
Mol Reprod Dev. 2014 Dec;81(12):1064-79
pubmed: 25359157
BMC Res Notes. 2020 Apr 10;13(1):211
pubmed: 32276656
Glycobiology. 2017 Jul 1;27(7):657-668
pubmed: 28369504
Biomed J. 2019 Aug;42(4):218-232
pubmed: 31627864
J Allergy Clin Immunol. 2019 Jun;143(6):2227-2237.e10
pubmed: 30543818
Blood. 2003 Jun 15;101(12):5014-20
pubmed: 12609831
Mol Cell Biol. 2006 Jul;26(13):4970-81
pubmed: 16782884
Biophys Rep (N Y). 2022 Jul 22;2(3):100064
pubmed: 36425332
Nat Commun. 2023 Apr 22;14(1):2327
pubmed: 37087495
Int Arch Allergy Immunol. 2019;180(2):91-102
pubmed: 31401630
J Histochem Cytochem. 1994 Nov;42(11):1417-25
pubmed: 7523489
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):E4170-9
pubmed: 27357658
Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7469-74
pubmed: 9636173
Mayo Clin Proc. 2021 Oct;96(10):2694-2707
pubmed: 34538424
Immunol Rev. 2018 Mar;282(1):151-167
pubmed: 29431215
Biochem Biophys Res Commun. 2018 Jan 1;495(1):854-859
pubmed: 29146181
J Allergy Clin Immunol. 2018 Jun;141(6):2196-2207
pubmed: 28888781
J Allergy Clin Immunol. 2022 Jun;149(6):1833-1844
pubmed: 35276243
J Immunol. 2006 Sep 1;177(5):2994-3003
pubmed: 16920935
J Biol Chem. 2005 Feb 11;280(6):4307-12
pubmed: 15563466
J Allergy Clin Immunol. 2000 Jun;105(6 Pt 1):1093-100
pubmed: 10856141
Am J Respir Cell Mol Biol. 2008 Jan;38(1):121-4
pubmed: 17690326
Front Immunol. 2021 Oct 11;12:737988
pubmed: 34721399
Front Immunol. 2019 Apr 04;10:699
pubmed: 31019513
Immunol Cell Biol. 2017 Apr;95(4):408-415
pubmed: 27874015
Blood. 1997 Aug 15;90(4):1345-64
pubmed: 9269751
Int J Biochem Cell Biol. 1999 Oct;31(10):1037-51
pubmed: 10582338
Cytokine. 2012 Jan;57(1):169-74
pubmed: 22079334
Glycobiology. 1999 Nov;9(11):1225-34
pubmed: 10536038
J Biol Chem. 1999 Aug 6;274(32):22729-38
pubmed: 10428856
J Allergy Clin Immunol. 2018 May;141(5):1774-1785.e7
pubmed: 28734845
Glia. 2020 May;68(5):989-998
pubmed: 31774586
Annu Rev Pathol. 2020 Jan 24;15:179-209
pubmed: 31977298
Anal Biochem. 1993 Jun;211(2):200-4
pubmed: 7686353
Front Immunol. 2018 Sep 20;9:2138
pubmed: 30294327
Blood. 2013 Mar 14;121(11):2084-94
pubmed: 23315163
Allergol Int. 2018 Sep;67S:S41-S44
pubmed: 29703694
Blood. 1995 Apr 15;85(8):2005-12
pubmed: 7718872
Cells. 2022 Mar 28;11(7):
pubmed: 35406705
Nat Chem Biol. 2005 Jul;1(2):93-7
pubmed: 16408005
J Immunol. 2014 Jun 1;192(11):5406-14
pubmed: 24790146
Glycobiology. 2023 Aug 14;33(7):532-544
pubmed: 37154567
Cells. 2021 May 20;10(5):
pubmed: 34065256
Elife. 2014 Sep 03;3:e04066
pubmed: 25187624
J Allergy Clin Immunol. 2008 Feb;121(2):499-505.e1
pubmed: 18036650
J Biol Chem. 2014 Jul 18;289(29):20370-6
pubmed: 24895121
Mucosal Immunol. 2021 Mar;14(2):366-376
pubmed: 32814824
J Biol Chem. 2000 Mar 24;275(12):8625-32
pubmed: 10722702
J Immunol Methods. 1989 Aug 15;122(1):97-103
pubmed: 2547875
JCI Insight. 2023 Mar 8;8(5):
pubmed: 36719745
Glycobiology. 2012 Jan;22(1):12-22
pubmed: 21725073
Nat Rev Immunol. 2022 May;22(5):294-308
pubmed: 34611316
FASEB J. 2001 Mar;15(3):645-58
pubmed: 11259383
J Pharmacol Exp Ther. 2009 Aug;330(2):608-12
pubmed: 19458105