Disentangling the causes of high polymorphism sharing in sympatric Petunia species from subtropical highland grasslands: insights from nuclear diversity.
Journal
Genetics and molecular biology
ISSN: 1415-4757
Titre abrégé: Genet Mol Biol
Pays: Brazil
ID NLM: 100883590
Informations de publication
Date de publication:
2023
2023
Historique:
received:
09
06
2023
accepted:
26
09
2023
medline:
6
11
2023
pubmed:
6
11
2023
entrez:
6
11
2023
Statut:
epublish
Résumé
Genetic polymorphism sharing between closely related and sympatric plant species could result from common ancestry, ancient or recent hybridization. Here we analyzed four Petunia species from the subtropical highland grasslands in southern South America based on nuclear diversity to disentangle the causes of high polymorphism sharing between them. We genotyped microsatellite loci, employed population genetic methods to estimate variability, species limits, and ancient and recent gene flow, and assigned individuals to genetic and taxonomic groups. Finally, we modeled evolutionary processes to determine the impact of Quaternary climate changes on species phylogenetic relationships. Our results indicated that genetic diversity was strongly influenced by expansion and habitat fragmentation during the Quaternary cycles. The extensive polymorphism sharing is mainly due to species' common ancestry, and we did not discard ancient hybridization. Nowadays, niche differentiation is the primary driver for maintaining genetic and morphological limits between the four analysed Petunia species and there is no recent gene flow between them.
Identifiants
pubmed: 37931074
pii: S1415-47572023000600102
doi: 10.1590/1678-4685-GMB-2023-0159
pmc: PMC10619130
pii:
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e20230159Références
Evol Appl. 2016 Apr 26;9(7):909-23
pubmed: 27468308
Am J Bot. 2000 Jun;87(6):783-92
pubmed: 10860909
Mol Ecol. 2005 Jul;14(8):2611-20
pubmed: 15969739
Mol Ecol. 2003 Mar;12(3):563-84
pubmed: 12675814
Genet Mol Biol. 2019 Jan-Mar;42(1):108-119
pubmed: 30856243
BMC Bioinformatics. 2010 Jul 28;11:401
pubmed: 20667077
J Evol Biol. 2013 Feb;26(2):279-81
pubmed: 23324007
Bioinformatics. 2006 Feb 1;22(3):341-5
pubmed: 16317072
Mol Phylogenet Evol. 2021 Jul;160:107113
pubmed: 33610648
Bioinformatics. 2014 Apr 15;30(8):1187-1189
pubmed: 24389659
Genetics. 2000 Jun;155(2):945-59
pubmed: 10835412
Ann Bot. 2015 May;115(6):939-48
pubmed: 25808656
J Evol Biol. 2013 Feb;26(2):229-46
pubmed: 23323997
Mol Phylogenet Evol. 2014 Aug;77:264-74
pubmed: 24792083
AoB Plants. 2015 Jul 17;7:
pubmed: 26187606
Syst Biol. 2018 Sep 1;67(5):901-904
pubmed: 29718447
Mol Phylogenet Evol. 2019 Dec;141:106614
pubmed: 31518694
Evolution. 2001 Oct;55(10):1943-62
pubmed: 11761056
Evolution. 2011 Jan;65(1):139-55
pubmed: 20722729
BMC Evol Biol. 2013 Sep 30;13:214
pubmed: 24283922
Ecol Evol. 2020 Apr 01;10(11):4726-4738
pubmed: 32551056
AoB Plants. 2019 Jul 09;11(4):plz037
pubmed: 31391895
Philos Trans R Soc Lond B Biol Sci. 2007 Feb 28;362(1478):243-51
pubmed: 17255033
Genetics. 2002 Mar;160(3):1217-29
pubmed: 11901135
Mol Ecol Resour. 2014 Jul;14(4):726-33
pubmed: 24373147
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4563-8
pubmed: 11287657
Front Plant Sci. 2019 Feb 01;10:4
pubmed: 30774638
Science. 2009 Feb 6;323(5915):785-9
pubmed: 19197066
Mol Phylogenet Evol. 2014 Dec;81:19-28
pubmed: 25196589
Mol Ecol Resour. 2010 May;10(3):564-7
pubmed: 21565059
Genome. 2011 Apr;54(4):327-40
pubmed: 21491975
Mol Ecol Resour. 2017 Jan;17(1):27-32
pubmed: 26850166
Genetics. 1992 Jun;131(2):479-91
pubmed: 1644282
Genetics. 2003 Mar;163(3):1177-91
pubmed: 12663554
Mol Ecol. 2010 Dec;19(23):5240-51
pubmed: 21040052
BMC Genet. 2010 Oct 15;11:94
pubmed: 20950446
Bioinformatics. 2008 Jun 1;24(11):1403-5
pubmed: 18397895
Mol Ecol. 2007 Mar;16(6):1149-66
pubmed: 17391403
Mol Ecol. 2016 Jun;25(11):2337-60
pubmed: 26836441
Genet Mol Biol. 2020 Apr 27;43(2):e20180291
pubmed: 32353100