Anticonvulsant effect of equilibrative nucleoside transporters 1 inhibitor in a mouse model of Dravet syndrome.

A1R ENT1 Scn1a febrile seizure patch-clamp

Journal

Hippocampus
ISSN: 1098-1063
Titre abrégé: Hippocampus
Pays: United States
ID NLM: 9108167

Informations de publication

Date de publication:
06 Nov 2023
Historique:
revised: 09 10 2023
received: 31 01 2023
accepted: 13 10 2023
medline: 7 11 2023
pubmed: 7 11 2023
entrez: 7 11 2023
Statut: aheadofprint

Résumé

There are limited therapeutic options for patients with Dravet syndrome (DS). The equilibrative nucleoside transporters 1 (ENT1) mediate both the influx and efflux of adenosine across the cell membrane exerted beneficial effects in the treatment of epilepsy. This study aimed to evaluate the anticonvulsant effect of the ENT1 inhibitor in an animal model of DS (Scn1a

Identifiants

pubmed: 37933097
doi: 10.1002/hipo.23584
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministry of Science and Technology, Taiwan
ID : MOST 111-2314-B-002-251
Organisme : National Taiwan University Hospital
ID : NTUH 109-S4593

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Baldwin, S. A., Beal, P. R., Yao, S. Y., King, A. E., Cass, C. E., & Young, J. D. (2004). The equilibrative nucleoside transporter family, SLC29. Pflügers Archiv, 447(5), 735-743. https://doi.org/10.1007/s00424-003-1103-2
Baltos, J. A., Casillas-Espinosa, P. M., Rollo, B., Gregory, K. J., White, P. J., Christopoulos, A., Kwan, P., O'Brien, T. J., & May, L. T. (2023). The role of the adenosine system in epilepsy and its comorbidities. British Journal of Pharmacology. 1-15. https://doi.org/10.1111/bph.16094. Online ahead of print.
Boison, D. (2012). Adenosine augmentation therapy. In J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, & A. V. Delgado-Escueta (Eds.), Jasper's basic mechanisms of the epilepsies (4th ed.). National Center for Biotechnology Information (US).
Boison, D. (2013). Role of adenosine in status epilepticus: A potential new target? Epilepsia, 54(Suppl 6), 20-22. https://doi.org/10.1111/epi.12268
Brundege, J. M., & Dunwiddie, T. V. (1996). Modulation of excitatory synaptic transmission by adenosine released from single hippocampal pyramidal neurons. The Journal of Neuroscience, 16(18), 5603-5612.
Ciruela, F., Gomez-Soler, M., Guidolin, D., Borroto-Escuela, D. O., Agnati, L. F., Fuxe, K., & Fernandez-Duenas, V. (2011). Adenosine receptor containing oligomers: Their role in the control of dopamine and glutamate neurotransmission in the brain. Biochimica et Biophysica Acta, 1808(5), 1245-1255. https://doi.org/10.1016/j.bbamem.2011.02.007
Cross, J. H., Caraballo, R. H., Nabbout, R., Vigevano, F., Guerrini, R., & Lagae, L. (2019). Dravet syndrome: Treatment options and management of prolonged seizures. Epilepsia, 60(Suppl 3), S39-S48. https://doi.org/10.1111/epi.16334
Das, A., Zhu, B., Xie, Y., Zeng, L., Pham, A. T., Neumann, J. C., Safrina, O., Benavides, D. R., MacGregor, G. R., Schutte, S. S., Hunt, R. F., & O'Dowd, D. K. (2021). Interneuron dysfunction in a new mouse model of SCN1A GEFS. eNeuro, 8(2), ENEURO.0394-20.2021. https://doi.org/10.1523/ENEURO.0394-20.2021
During, M. J., & Spencer, D. D. (1992). Adenosine: A potential mediator of seizure arrest and postictal refractoriness. Annals of Neurology, 32(5), 618-624. https://doi.org/10.1002/ana.410320504
Fredholm, B. B., Ijerman, A. P., Jacobson, K. A., Klotz, K. N., & Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews, 53(4), 527-552.
Gu, F., Hazra, A., Aulakh, A., & Ziburkus, J. (2014). Purinergic control of hippocampal circuit hyperexcitability in Dravet syndrome. Epilepsia, 55(2), 245-255. https://doi.org/10.1111/epi.12487
Han, S., Tai, C., Westenbroek, R. E., Yu, F. H., Cheah, C. S., Potter, G. B., Rubenstein, J. L., Scheuer, T., de la Iglesia, H. O., & Catterall, W. A. (2012). Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 489(7416), 385-390. https://doi.org/10.1038/nature11356
Harkin, L. A., McMahon, J. M., Iona, X., Dibbens, L., Pelekanos, J. T., Zuberi, S. M., Sadleir, L. G., Andermann, E., Gill, D., Farrell, K., Connolly, M., Stanley, T., Harbord, M., Andermann, F., Wang, J., Batish, S. D., Jones, J. G., Seltzer, W. K., Gardner, A., … Scheffer, I. E. (2007). The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain, 130(Pt 3), 843-852. https://doi.org/10.1093/brain/awm002
Ho, S. Y., Chen, I. C., Chang, K. C., Lin, H. R., Tsai, C. W., Lin, C. J., & Liou, H. H. (2020). Equilibrative nucleoside transporters-1 inhibitors act as anti-epileptic agents by inhibiting glutamatergic transmission. Frontiers in Neuroscience, 14, 610898. https://doi.org/10.3389/fnins.2020.610898
Kao, Y. H., Lin, M. S., Chen, C. M., Wu, Y. R., Chen, H. M., Lai, H. L., Chern, Y., & Lin, C. J. (2017). Targeting ENT1 and adenosine tone for the treatment of Huntington's disease. Human Molecular Genetics, 26(3), 467-478. https://doi.org/10.1093/hmg/ddw402
Latini, S., & Pedata, F. (2001). Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. Journal of Neurochemistry, 79(3), 463-484. https://doi.org/10.1046/j.1471-4159.2001.00607.x
Manita, S., Kawamura, Y., Sato, K., Inoue, M., Kudo, Y., & Miyakawa, H. (2004). Adenosine A(1)-receptor-mediated tonic inhibition of glutamate release at rat hippocampal CA3-CA1 synapses is primarily due to inhibition of N-type Ca(2+) channels. European Journal of Pharmacology, 499(3), 265-274. https://doi.org/10.1016/j.ejphar.2004.07.113
Morimoto, T., Nagao, H., Yoshimatsu, M., Yoshida, K., & Matsuda, H. (1993). Pathogenic role of glutamate in hyperthermia-induced seizures. Epilepsia, 34(3), 447-452. https://doi.org/10.1111/j.1528-1157.1993.tb02585.x
Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., Takeuchi, T., Itohara, S., Yanagawa, Y., Obata, K., Furuichi, T., Hensch, T. K., & Yamakawa, K. (2007). Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. The Journal of Neuroscience, 27(22), 5903-5914. https://doi.org/10.1523/JNEUROSCI.5270-06.2007
Parkinson, F. E., Damaraju, V. L., Graham, K., Yao, S. Y., Baldwin, S. A., Cass, C. E., & Young, J. D. (2011). Molecular biology of nucleoside transporters and their distributions and functions in the brain. Current Topics in Medicinal Chemistry, 11(8), 948-972. https://doi.org/10.2174/156802611795347582
Quilichini, P. P., Chiron, C., Ben-Ari, Y., & Gozlan, H. (2006). Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia, 47(4), 704-716. https://doi.org/10.1111/j.1528-1167.2006.00497.x
Racine, R. J. (1972). Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32(3), 281-294. https://doi.org/10.1016/0013-4694(72)90177-0
Shen, H. Y., Li, T., & Boison, D. (2010). A novel mouse model for sudden unexpected death in epilepsy (SUDEP): Role of impaired adenosine clearance. Epilepsia, 51(3), 465-468. https://doi.org/10.1111/j.1528-1167.2009.02248.x
Shi, X., He, W., Guo, S., Zhang, B., Ren, S., Liu, K., Sun, T., & Cui, J. (2019). RNA-seq analysis of the SCN1A-KO model based on CRISPR/Cas9 genome editing technology. Neuroscience, 398, 1-11. https://doi.org/10.1016/j.neuroscience.2018.11.052
Tsai, M. S., Lee, M. L., Chang, C. Y., Fan, H. H., Yu, I. S., Chen, Y. T., You, J. Y., Chen, C. Y., Chang, F. C., Hsiao, J. H., Khorkova, O., Liou, H. H., Yanagawa, Y., Lee, L. J., & Lin, S. W. (2015). Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet syndrome model during development. Neurobiology of Disease, 77, 35-48. https://doi.org/10.1016/j.nbd.2015.02.010
van Dycke, A., Raedt, R., Dauwe, I., Sante, T., Wyckhuys, T., Meurs, A., Vonck, K., Wadman, W., & Boon, P. (2010). Continuous local intrahippocampal delivery of adenosine reduces seizure frequency in rats with spontaneous seizures. Epilepsia, 51(9), 1721-1728. https://doi.org/10.1111/j.1528-1167.2010.02700.x
Winn, H. R., Welsh, J. E., Rubio, R., & Berne, R. M. (1980). Changes in brain adenosine during bicuculline-induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circulation Research, 47(4), 568-577. https://doi.org/10.1161/01.res.47.4.568
Xu, Z., Xu, P., Chen, Y., Liu, J., Zhang, Y., Lv, Y., Luo, J., Fang, M., Zhang, J., Wang, J., Wang, K., Wang, X., & Chen, G. (2015). ENT1 inhibition attenuates epileptic seizure severity via regulation of glutamatergic neurotransmission. Neuromolecular Medicine, 17(1), 1-11. https://doi.org/10.1007/s12017-014-8338-2
Young, D., & Dragunow, M. (1994). Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience, 58(2), 245-261. https://doi.org/10.1016/0306-4522(94)90032-9
Yu, F. H., Mantegazza, M., Westenbroek, R. E., Robbins, C. A., Kalume, F., Burton, K. A., Spain, W. J., McKnight, G. S., Scheuer, T., & Catterall, W. A. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 9(9), 1142-1149. https://doi.org/10.1038/nn1754
Zhang, G., Franklin, P. H., & Murray, T. F. (1993). Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. The Journal of Pharmacology and Experimental Therapeutics, 264(3), 1415-1424.
Zhou, X., Chen, Q., Huang, H., Zhang, J., Wang, J., Chen, Y., Peng, Y., Zhang, H., Zeng, J., Feng, Z., & Xu, Z. (2020). Inhibition of p38 MAPK regulates epileptic severity by decreasing expression levels of A1R and ENT1. Molecular Medicine Reports, 22(6), 5348-5357. https://doi.org/10.3892/mmr.2020.11614

Auteurs

Shih-Yin Ho (SY)

Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan.

I-Chun Chen (IC)

Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Che-Wen Tsai (CW)

Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Kai-Chieh Chang (KC)

Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan.

Chun-Jung Lin (CJ)

School of Pharmacy, National Taiwan University, Taipei, Taiwan.

Yijuang Chern (Y)

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Horng-Huei Liou (HH)

Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan.
Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan.

Classifications MeSH