IR-820@NBs Combined with MG-132 Enhances the Anti-Hepatocellular Carcinoma Effect of Sonodynamic Therapy.
MG-132
apoptosis
autophagy
hepatocellular carcinoma
sonodynamic therapy
Journal
International journal of nanomedicine
ISSN: 1178-2013
Titre abrégé: Int J Nanomedicine
Pays: New Zealand
ID NLM: 101263847
Informations de publication
Date de publication:
2023
2023
Historique:
received:
24
07
2023
accepted:
23
10
2023
medline:
8
11
2023
pubmed:
7
11
2023
entrez:
7
11
2023
Statut:
epublish
Résumé
Sonodynamic therapy (SDT) is a promising and significant measure for the treatment of tumors. However, the internal situation of hepatocellular carcinoma (HCC) is complex, separate SDT treatment is difficult to play a good therapeutic effect. Here, we used SDT combined with MG-132 to mediate apoptosis and autophagy of HCC cells to achieve the purpose of treatment of cancer. To determine the generated reactive oxygen species (ROS) and the change of mitochondrial membrane potential (ΔΨm), HepG2 cells were stained by 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and 5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide (JC-1) staining to determine the IR-820@NBs-mediated SDT to achieve HCC therapy through the mitochondrial pathway. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to detect cell viability and apoptosis rate of HepG2 cells. Autophagy was detected by mCherry-GFP-LC3B fluorescence labeling. Chloroquine (Cq) pretreatment was used to explore the relationship between autophagy and apoptosis. To detect the ability of HepG2 cells migration and invasion, cell scratch assay and transwell assay were used. The successfully prepared IR-820@NBs could effectively overcome the shortcomings of IR-820 and induce lethal levels of ROS by ultrasound irradiation. As a dual agonist of apoptosis and autophagy, MG-132 could effectively enhance the efficacy of SDT in the process of treating HCC. After pre-treatment with Cq, the cell activity increased and the level of apoptosis decreased, which proved that apoptosis and autophagy were induced by combined therapy, autophagy, and apoptosis have the synergistic anti-tumor effect, and part of apoptosis was autophagy-dependent. After combined therapy, the activity and invasive ability of HCC cells decreased significantly. SDT combined with MG-132 in the process of treating liver cancer could effectively induce apoptosis and autophagy anti-tumor therapy, which is helpful to the research of new methods to treat liver cancer.
Identifiants
pubmed: 37933299
doi: 10.2147/IJN.S431910
pii: 431910
pmc: PMC10625775
doi:
Substances chimiques
benzyloxycarbonylleucyl-leucyl-leucine aldehyde
RF1P63GW3K
Reactive Oxygen Species
0
IR 820
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6199-6212Informations de copyright
© 2023 Wang et al.
Déclaration de conflit d'intérêts
The authors report no conflicts of interest in this work.
Références
Front Bioeng Biotechnol. 2023 Apr 10;11:1139426
pubmed: 37101748
Toxicol Appl Pharmacol. 2018 Jan 1;338:30-42
pubmed: 29129777
CA Cancer J Clin. 2018 Jan;68(1):7-30
pubmed: 29313949
Artif Cells Nanomed Biotechnol. 2023 Dec;51(1):205-216
pubmed: 37083545
Autophagy. 2023 Jun;19(6):1619-1641
pubmed: 36594740
Biochim Biophys Acta. 2007 Jan;1771(1):20-30
pubmed: 17196878
Cell Prolif. 2018 Dec;51(6):e12518
pubmed: 30152053
Front Pharmacol. 2020 May 12;11:644
pubmed: 32477125
Int J Biochem Cell Biol. 2015 Mar;60:82-92
pubmed: 25578562
Mol Cell. 2011 Dec 9;44(5):698-709
pubmed: 22152474
World J Gastrointest Pathophysiol. 2023 Jun 1;14(3):46-70
pubmed: 37304923
Antioxid Redox Signal. 2023 Jul;39(1-3):79-101
pubmed: 36734418
Cell Transplant. 2018 Aug;27(8):1235-1248
pubmed: 30001636
Oncol Rep. 2022 Dec;48(6):
pubmed: 36222296
J Cell Biol. 2010 Aug 23;190(4):523-31
pubmed: 20713604
Hum Exp Toxicol. 2020 Apr;39(4):464-476
pubmed: 31823663
Biochim Biophys Acta. 2015 May;1852(5):826-38
pubmed: 25643868
Apoptosis. 2017 Jan;22(1):27-40
pubmed: 27766434
J Exp Clin Cancer Res. 2023 Mar 20;42(1):68
pubmed: 36935496
Int J Nanomedicine. 2019 Nov 26;14:9139-9157
pubmed: 32063704
Int J Nanomedicine. 2018 Nov 22;13:7859-7872
pubmed: 30538464
J Biophotonics. 2021 Nov;14(11):e202100117
pubmed: 34331509
Adv Sci (Weinh). 2023 Aug;10(23):e2301638
pubmed: 37303273
ACS Appl Mater Interfaces. 2019 May 22;11(20):18178-18185
pubmed: 31037944
Drug Deliv. 2022 Dec;29(1):1743-1753
pubmed: 35635315
Theor Biol Med Model. 2019 Oct 29;16(1):18
pubmed: 31665034
J Cell Physiol. 2023 Aug;238(8):1641-1650
pubmed: 37260091
N Engl J Med. 2019 Apr 11;380(15):1450-1462
pubmed: 30970190
Cell. 2014 Dec 18;159(7):1563-77
pubmed: 25525875
Pharmacol Ther. 2022 Feb;230:107943
pubmed: 34182005
Cells. 2022 Mar 01;11(5):
pubmed: 35269473
Hum Exp Toxicol. 2021 Nov;40(11):1985-1997
pubmed: 34002651
Apoptosis. 2023 Apr;28(3-4):447-457
pubmed: 36520321
J Nanobiotechnology. 2020 Sep 3;18(1):121
pubmed: 32883330
FASEB J. 2022 Apr;36(4):e22228
pubmed: 35218571
Antioxid Redox Signal. 2014 Jul 1;21(1):86-102
pubmed: 24359220
J Colloid Interface Sci. 2023 Aug 15;644:388-396
pubmed: 37120887
J Colloid Interface Sci. 2022 Apr 15;612:246-260
pubmed: 34995863
Eur J Pharm Biopharm. 2022 Dec;181:36-48
pubmed: 36307001
J Mol Cell Cardiol. 2022 Apr;165:1-8
pubmed: 34919896
Arch Pharm Res. 2020 May;43(5):475-488
pubmed: 32458284
J Enzyme Inhib Med Chem. 2023 Dec;38(1):2185761
pubmed: 36912230
Ageing Res Rev. 2015 Sep;23(Pt A):90-100
pubmed: 25862945
Clin Breast Cancer. 2023 Jun;23(4):388-396
pubmed: 36872108
Nat Rev Mol Cell Biol. 2020 Feb;21(2):85-100
pubmed: 31636403
Hum Exp Toxicol. 2021 Dec;40(12):2048-2062
pubmed: 34053323
J Colloid Interface Sci. 2022 Nov 15;626:803-814
pubmed: 35820215
J Transl Med. 2016 Jan 22;14:21
pubmed: 26801617
Oncol Lett. 2020 Jan;19(1):858-868
pubmed: 31897200
Redox Biol. 2013 Jan 26;1:56-64
pubmed: 24024137
Chem Sci. 2022 Aug 5;13(34):9921-9926
pubmed: 36128230
Nat Cell Biol. 2014 Jan;16(1):47-54
pubmed: 24316673
Theranostics. 2022 Jan 1;12(1):76-86
pubmed: 34987635