Accuracy of digital implant impressions using a novel structured light scanning system assisted by a planar mirror in the edentulous maxilla: An in vitro study.

accuracy digital implant dentistry edentulous impressions mirror structured light scanning technologies

Journal

Clinical oral implants research
ISSN: 1600-0501
Titre abrégé: Clin Oral Implants Res
Pays: Denmark
ID NLM: 9105713

Informations de publication

Date de publication:
06 Nov 2023
Historique:
revised: 27 10 2023
received: 11 06 2023
accepted: 02 11 2023
pubmed: 7 11 2023
medline: 7 11 2023
entrez: 7 11 2023
Statut: aheadofprint

Résumé

This study aimed to develop a structured light scanning system with a planar mirror to enhance the digital full-arch implant impression accuracy and to compare it with photogrammetry and intraoral scanner methods. An edentulous maxillary stone cast with six scan bodies was scanned as the reference model using a laboratory scanner. Three scanning modalities were compared (n = 10): (1) self-developed structured light scanning with a mirror (SSLS); (2) intraoral scanner (IOS); and (3) photogrammetry system (PG). The scanners were stopped for 1 min after each scan. Six scan bodies were analysed within each scan model. Linear deviations between the scan bodies (1-2, 1-3, 1-4, 1-5, and 1-6) and 3D mucosal deviations were established. The overall deviation was calculated as the mean of all linear deviations. "Trueness" represented the discrepancy between the test and reference files, while "precision" denoted the consistency among the test files. Kruskal-Wallis and Mann-Whitney U tests were used for statistical analyses. Significant overall linear discrepancies were noted among the SSLS, PG, and IOS groups (p < .001). SSLS showed the best overall trueness and precision (6.6, 5.7 μm), followed by PG (58.4, 6.8 μm) and IOS (214.6, 329.1 μm). For the 3D mucosal deviation, the trueness (p < .001) and precision (p < .001) of the SSLS group were significantly better than those of the IOS group. The SSLS exhibited higher accuracy in determining the implant positions than the PG and IOS. Additionally, it demonstrated better accuracy in capturing the mucosa than IOS.

Identifiants

pubmed: 37933413
doi: 10.1111/clr.14208
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : National Natural Science Foundation of China
ID : 52105265
Organisme : National Natural Science Foundation of China
ID : 52035001
Organisme : National Key R&D Program of China
ID : 2019YFB1706900
Organisme : Beijing Training Project For The Leading Talents in S&T
ID : Z191100006119022

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Akay, A., & Akgul, Y. S. (2014). 3D reconstruction with mirrors and RGB-D cameras. Paper presented at the 9th International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal. IEEE.
Bergin, J. M., Rubenstein, J. E., Mancl, L., Brudvik, J. S., & Raigrodski, A. J. (2013). An in vitro comparison of photogrammetric and conventional complete-arch implant impression techniques. Journal of Prosthetic Dentistry, 110(4), 243-251. https://doi.org/10.1016/S0022-3913(13)60370-4
Borbola, D., Berkei, G., Simon, B., Romanszky, L., Sersli, G., DeFee, M., Renne, W., Mangano, F., & Vag, J. (2023). In vitro comparison of five desktop scanners and an industrial scanner in the evaluation of an intraoral scanner accuracy. Journal of Dentistry, 129, 104391. https://doi.org/10.1016/j.jdent.2022.104391
Chen, J. K., Sun, Y. C., Chen, H., Cao, Y., Ke, Y. F., & Zhou, Y. S. (2021). Quantitative study of intraoral scanners' accuracy. Zhonghua Kou Qiang Yi Xue Za Zhi, 56(9), 920-925. https://doi.org/10.3760/cma.j.cn112144-20210130-00048
Fasano, A., Callieri, M., Cignoni, P., & Scopigno, R. (2003). Exploiting mirrors for laser stripe 3D scanning. Paper presented at the 4th International Conference on 3-D Digital Imaging and Modeling (3-DIM 2003), 243-250. IEEE.
Ferreira de Almeida, D. C., Calasans-Maia, M. D., Zimmermann, D., & Moraschini, V. (2021). A completely digital approach to replicating functional and esthetic parameters in mandibular implant-supported complete-arch prostheses. Journal of Prosthetic Dentistry, 126(5), 622-625. https://doi.org/10.1016/j.prosdent.2020.05.041
Flugge, T., van der Meer, W. J., Gonzalez, B. G., Vach, K., Wismeijer, D., & Wang, P. (2018). The accuracy of different dental impression techniques for implant-supported dental prostheses: A systematic review and meta-analysis. Clinical Oral Implants Research, 29(Suppl. 16), 374-392. https://doi.org/10.1111/clr.13273
Gomez-Polo, M., Ballesteros, J., Padilla, P. P., Pulido, P. P., Revilla-Leon, M., & Ortega, R. (2021). Merging intraoral scans and CBCT: A novel technique for improving the accuracy of 3D digital models for implant-supported complete-arch fixed dental prostheses. International Journal of Computerized Dentistry, 24(2), 117-123.
Gómez-Polo, M., Ballesteros, J., Perales-Padilla, P., Perales-Pulido, P., Gómez-Polo, C., & Ortega, R. (2020). Guided implant scanning: A procedure for improving the accuracy of implant-supported complete-arch fixed dental prostheses. Journal of Prosthetic Dentistry, 124(2), 135-139. https://doi.org/10.1016/j.prosdent.2019.09.022
Goodacre, C. J., Bernal, G., Rungcharassaeng, K., & Kan, J. Y. (2003). Clinical complications with implants and implant prostheses. Journal of Prosthetic Dentistry, 90(2), 121-132. https://doi.org/10.1016/s0022-3913(03)00212-9
Gorthi, S. S., & Rastogi, P. (2010). Fringe projection techniques: Whither we are? Optics and Lasers in Engineering, 48(2), 133-140. https://doi.org/10.1016/j.optlaseng.2009.09.001
Huang, R., Liu, Y., Huang, B., Zhang, C., Chen, Z., & Li, Z. (2020). Improved scanning accuracy with newly designed scan bodies: An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation. Clinical Oral Implants Research, 31(7), 625-633. https://doi.org/10.1111/clr.13598
Huang, R., Liu, Y., Huang, B., Zhou, F., Chen, Z., & Li, Z. (2021). Improved accuracy of digital implant impressions with newly designed scan bodies: An in vivo evaluation in beagle dogs. BMC Oral Health, 21(1), 623. https://doi.org/10.1186/s12903-021-01986-2
Iturrate, M., Eguiraun, H., & Solaberrieta, E. (2019). Accuracy of digital impressions for implant-supported complete-arch prosthesis, using an auxiliary geometry part-an in vitro study. Clinical Oral Implants Research, 30(12), 1250-1258. https://doi.org/10.1111/clr.13549
Iturrate, M., Minguez, R., Pradies, G., & Solaberrieta, E. (2019). Obtaining reliable intraoral digital scans for an implant-supported complete-arch prosthesis: A dental technique. Journal of Prosthetic Dentistry, 121(2), 237-241. https://doi.org/10.1016/j.prosdent.2018.03.008
Ke, Y., Zhang, Y., Wang, Y., Chen, H., & Sun, Y. (2023). Comparing the accuracy of full-arch implant impressions using the conventional technique and digital scans with and without prefabricated landmarks in the mandible: An in vitro study. Journal of Dentistry, 135, 104561. https://doi.org/10.1016/j.jdent.2023.104561
Kernen, F. R., Recca, M., Vach, K., Nahles, S., Nelson, K., & Flugge, T. V. (2022). In vitro scanning accuracy using different aids for multiple implants in the edentulous arch. Clinical Oral Implants Research, 33(10), 1010-1020. https://doi.org/10.1111/clr.13982
Li, L., Sun, Y., Wang, Y., Li, W., Dai, N., Tian, S., & Cui, H. (2020). Accuracy of a novel virtual articulator for recording three-dimensional dentition. International Journal of Prosthodontics, 33(4), 441-451. https://doi.org/10.11607/ijp.6480
Lyu, M., Di, P., Lin, Y., & Jiang, X. (2021). Accuracy of impressions for multiple implants: A comparative study of digital and conventional techniques. Journal of Prosthetic Dentistry, 128(5), 1017-1023. https://doi.org/10.1016/j.prosdent.2021.01.016
Ma, B., Yue, X., Sun, Y., Peng, L., & Geng, W. (2021). Accuracy of photogrammetry, intraoral scanning, and conventional impression techniques for complete-arch implant rehabilitation: An in vitro comparative study. BMC Oral Health, 21(1), 636. https://doi.org/10.1186/s12903-021-02005-0
Mandelli, F., Zaetta, A., Cucchi, A., & Mangano, F. G. (2020). Solid index impression protocol: A hybrid workflow for high accuracy and passive fit of full-arch implant-supported restorations. International Journal of Computerized Dentistry, 23(2), 161-181.
Masumura, H., Ji, Y., & Umeda, K. (2020). Shape reconstruction using a mirror with a range image sensor-Detection of mirror in a range image. In Proceedings of the 7th Asia International Symposium on Mechatronics: Volume Ⅱ, 994-1000. Springer.
Miyoshi, K., Tanaka, S., Yokoyama, S., Sanda, M., & Baba, K. (2020). Effects of different types of intraoral scanners and scanning ranges on the precision of digital implant impressions in edentulous maxilla: An in vitro study. Clinical Oral Implants Research, 31(1), 74-83. https://doi.org/10.1111/clr.13548
Mizumoto, R. M., Yilmaz, B., McGlumphy, E. A., Jr., Seidt, J., & Johnston, W. M. (2020). Accuracy of different digital scanning techniques and scan bodies for complete-arch implant-supported prostheses. Journal of Prosthetic Dentistry, 123(1), 96-104. https://doi.org/10.1016/j.prosdent.2019.01.003
Mormann, W. H. (2006). The evolution of the CEREC system. Journal of the American Dental Association, 137(Suppl), 7S-13S. https://doi.org/10.14219/jada.archive.2006.0398
Nagata, K., Fuchigami, K., Okuhama, Y., Wakamori, K., Tsuruoka, H., Nakashizu, T., Hoshi, N., Atsumi, M., Kimoto, K., & Kawana, H. (2021). Comparison of digital and silicone impressions for single-tooth implants and two- and three-unit implants for a free-end edentulous saddle. BMC Oral Health, 21(1), 464. https://doi.org/10.1186/s12903-021-01836-1
Paratelli, A., Vania, S., Gomez-Polo, C., Ortega, R., Revilla-Leon, M., & Gomez-Polo, M. (2021). Techniques to improve the accuracy of complete-arch implant intraoral digital scans: A systematic review. Journal of Prosthetic Dentistry, 129(6), 844-854. https://doi.org/10.1016/j.prosdent.2021.08.018
Peñarrocha-Diago, M., Balaguer-Martí, J. C., Peñarrocha-Oltra, D., Balaguer-Martínez, J. F., Peñarrocha-Diago, M., & Agustín-Panadero, R. (2017). A combined digital and stereophotogrammetric technique for rehabilitation with immediate loading of complete-arch, implant-supported prostheses: A randomized controlled pilot clinical trial. Journal of Prosthetic Dentistry, 118(5), 596-603. https://doi.org/10.1016/j.prosdent.2016.12.015
Penarrocha-Oltra, D., Agustin-Panadero, R., Bagan, L., Gimenez, B., & Penarrocha, M. (2014). Impression of multiple implants using photogrammetry: Description of technique and case presentation. Medicina Oral, Patología Oral y Cirugía Bucal, 19(4), e366-e371. https://doi.org/10.4317/medoral.19365
Pjetursson, B. E., Thoma, D., Jung, R., Zwahlen, M., & Zembic, A. (2012). A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clinical Oral Implants Research, 23(Suppl. 6), 22-38. https://doi.org/10.1111/j.1600-0501.2012.02546.x
Resende, C. C. D., Barbosa, T. A. Q., Moura, G. F., Tavares, L. D. N., Rizzante, F. A. P., George, F. M., Neves, F. D. D., & Mendonca, G. (2021). Influence of operator experience, scanner type, and scan size on 3D scans. Journal of Prosthetic Dentistry, 125(2), 294-299. https://doi.org/10.1016/j.prosdent.2019.12.011
Revilla-Leon, M., Att, W., Ozcan, M., & Rubenstein, J. (2021). Comparison of conventional, photogrammetry, and intraoral scanning accuracy of complete-arch implant impression procedures evaluated with a coordinate measuring machine. Journal of Prosthetic Dentistry, 125(3), 470-478. https://doi.org/10.1016/j.prosdent.2020.03.005
Riquelme, A. J., Ferrer, B., & Mas, D. (2017). Use of high-quality and common commercial mirrors for scanning close-range surfaces using 3D laser scanners: A laboratory experiment. Remote Sensing, 9(11), 1152. https://doi.org/10.3390/rs9111152
Rivara, F., Lumetti, S., Calciolari, E., Toffoli, A., Forlani, G., & Manfredi, E. (2016). Photogrammetric method to measure the discrepancy between clinical and software-designed positions of implants. Journal of Prosthetic Dentistry, 115(6), 703-711. https://doi.org/10.1016/j.prosdent.2015.10.017
Runkel, C., Guth, J. F., Erdelt, K., & Keul, C. (2020). Digital impressions in dentistry-accuracy of impression digitalisation by desktop scanners. Clinical Oral Investigations, 24(3), 1249-1257. https://doi.org/10.1007/s00784-019-02995-w
Rutkunas, V., Gedrimiene, A., Akulauskas, M., Fehmer, V., Sailer, I., & Jegelevicius, D. (2021). In vitro and in vivo accuracy of full-arch digital implant impressions. Clinical Oral Implants Research, 32(12), 1444-1454. https://doi.org/10.1111/clr.13844
Sánchez-Monescillo, A., Sánchez-Turrión, A., Vellon-Domarco, E., Salinas-Goodier, C., & Prados-Frutos, J. C. (2016). Photogrammetry impression technique: A case history report. International Journal of Prosthodontics, 29(1), 71-73. https://doi.org/10.11607/ijp.4287
Tan, M. Y., Yee, S. H. X., Wong, K. M., Tan, Y. H., & Tan, K. B. C. (2019). Comparison of three-dimensional accuracy of digital and conventional implant impressions: Effect of interimplant distance in an edentulous arch. International Journal of Oral and Maxillofacial Implants, 34(2), 366-380. https://doi.org/10.11607/jomi.6855
Thanasrisuebwong, P., Kulchotirat, T., & Anunmana, C. (2021). Effects of inter-implant distance on the accuracy of intraoral scanner: An in vitro study. The Journal of Advanced Prosthodontics, 13(2), 107-116. https://doi.org/10.4047/jap.2021.13.2.107
Tohme, H., Lawand, G., Chmielewska, M., & Makhzoume, J. (2021). Comparison between stereophotogrammetric, digital, and conventional impression techniques in implant-supported fixed complete arch prostheses: An in vitro study. Journal of Prosthetic Dentistry, 129(2), 354-362. https://doi.org/10.1016/j.prosdent.2021.05.006
Venezia, P., Torsello, F., Santomauro, V., Dibello, V., & Cavalcanti, R. (2019). Full digital workflow for the treatment of an edentulous patient with guided surgery, immediate loading and 3D-printed hybrid prosthesis: The BARI technique 2.0. A case report. International Journal of Environmental Research and Public Health, 16(24), 5160. https://doi.org/10.3390/ijerph16245160
Whelan, T., Goesele, M., Lovegrove, S. J., Straub, J., Green, S., Szeliski, R., Butterfield, S., Verma, S. I., & Newcombe, R. (2018). Reconstructing scenes with Mirror and glass surfaces. ACM Transactions on Graphics, 37(4), 102-111. https://doi.org/10.1145/3197517.3201319

Auteurs

Yifang Ke (Y)

Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, China.

Yaopeng Zhang (Y)

Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, China.

Sukun Tian (S)

Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, China.

Hu Chen (H)

Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, China.

Yuchun Sun (Y)

Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, China.

Classifications MeSH