Comparison of poisoning deaths with wastewater-based consumption estimates and assessment of fatal toxicity for amphetamine-type stimulant drugs.
MDMA
amphetamines
drug-related death
fatal toxicity
wastewater-based epidemiology
Journal
Drug testing and analysis
ISSN: 1942-7611
Titre abrégé: Drug Test Anal
Pays: England
ID NLM: 101483449
Informations de publication
Date de publication:
07 Nov 2023
07 Nov 2023
Historique:
revised:
19
10
2023
received:
18
07
2023
accepted:
21
10
2023
medline:
7
11
2023
pubmed:
7
11
2023
entrez:
7
11
2023
Statut:
aheadofprint
Résumé
Among several established indicators that are used to monitor the illicit drug scene, drug-related deaths and wastewater-based epidemiology (WBE) stand out for population-level coverage. In this study, we aimed to compare temporal trends with respect to amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA) revealed by these indicators and explore the differences in fatal toxicity between the stimulants. All deaths in which poisoning caused by amphetamine, methamphetamine or MDMA was either the underlying or contributing cause of death in Finland in 2012, 2014, 2016, 2018 and 2020 were included in the study. Consumption of the studied drugs was measured by WBE in the same years. There was a significant correlation between poisoning and drug consumption for all three stimulants, and for amphetamine and MDMA, these figures increased over the study period. The highest fatal toxicity, as expressed by the number of deaths per million doses, was obtained for methamphetamine at an estimated dose of 50 mg, followed by MDMA (100 mg dose) and with amphetamine (50 mg dose). The fatal toxicity found here for the stimulants was close to that previously reported for many prescription opioids and tricyclic antidepressants. Our study is the first to quantitatively investigate the fatal toxicity of amphetamine-type stimulants by comparing deaths with consumption estimates derived from WBE. It shows that amphetamine, methamphetamine and MDMA possess a quite similar capacity to cause death. This new approach adds to the earlier methods of estimating drug-related harm.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd.
Références
Daughton CG. Illicit drugs in municipal sewage: proposed new non-intrusive tool to heighten public awareness of societal use of illicit/abused drugs and their potential for ecological consequences. In: Daughton CG, Jones-Lepp T, eds. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Symposium Series. American Chemical Society, Washington, D.C; 2001:348-364. doi:10.1021/bk-2001-0791.ch020
Zuccato E, Chiabrando C, Castiglioni S, et al. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environ Health. 2005;4(1):14. doi:10.1186/1476-069X-4-14
van Nuijs ALN, Mougel JF, Tarcomnicu I, et al. Sewage epidemiology-a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium. Environ Int. 2011;37(3):612-621. doi:10.1016/j.envint.2010.12.006
González-Mariño I, Baz-Lomba JA, Alygizakis NA, et al. Spatio-temporal assessment of illicit drug use at large scale: evidence from 7 years of international wastewater monitoring. Addiction. 2020;115(1):109-120. doi:10.1111/add.14767
EMCDDA Wastewater analysis and drugs-a European multi-city study (Perspectives on Drugs). Page last updated: March 2022. Accessed December 12, 2022. https://www.emcdda.europa.eu/publications/html/pods/waste-water-analysis_en
Kankaanpää A, Ariniemi K, Heinonen M, Kuoppasalmi K, Gunnar T. Current trends in Finnish drug abuse: wastewater based epidemiology combined with other national indicators. Sci Total Environ. 2016;568:864-874. doi:10.1016/j.scitotenv.2016.06.060
Bade R, Tscharke BJ, Longo M, Cooke R, White JM, Gerber C. Investigating the correlation between wastewater analysis and roadside drug testing in South Australia. Drug Alcohol Depend. 2018;187:123-126. doi:10.1016/j.drugalcdep.2018.02.030
Goulding N, Hickman M, Reid M, et al. A comparison of trends in wastewater-based data and traditional epidemiological indicators of stimulant consumption in three locations. Addiction. 2020;115(3):462-472. doi:10.1111/add.14852
Löve ASC, Ásgrímsson V, Ólafsdóttir K. Illicit drug use in Reykjavik by wastewater-based epidemiology. Sci Total Environ. 2022;803:149795. doi:10.1016/j.scitotenv.2021.149795
Karjalainen K, Gunnar T, Hakkarainen P, Kankaanpää A, Rönkä S. Analysis of illicit stimulant use triangulating wastewater, general population survey and web survey data. Nord Stud Alcohol Drugs. 2023;40(2):160-175. doi:10.1177/14550725221122150
Gushgari AJ, Venkatesan AK, Chen J, Steele JC, Halden RU. Long-term tracking of opioid consumption in two United States cities using wastewater-based epidemiology approach. Water Res. 2019;161:171-180. doi:10.1016/j.watres.2019.06.003
EMCDDA European Monitoring Centre for Drugs and Drug Addiction. (2022), European Drug Report 2022: Trends and Developments, Publications Office of the European Union. Accessed December 12, 2022. https://www.emcdda.europa.eu/publications/edr/trends-developments/2022_en
King LA, Moffat AC. Hypnotics and sedatives: an index of fatal toxicity. Lancet. 1981;1(8216):387-388.
King LA, Moffat AC. A possible index of fatal drug toxicity in humans. Med Sci Law. 1983;23(3):193-198. doi:10.1177/002580248302300307
Ojanperä I, Kriikku P, Vuori E. Fatal toxicity index of medicinal drugs based on a comprehensive toxicology database. Int J Leg Med. 2016;130(5):1209-1216. doi:10.1007/s00414-016-1358-8
King LA, Corkery JM. An index of fatal toxicity for drugs of misuse. Hum Psychopharmacol. 2010;25(2):162-166. doi:10.1002/hup.1090
Ketola RA, Ojanperä I. Summary statistics for drug concentrations in post-mortem femoral blood representing all causes of death. Drug Test Anal. 2019;11(9):1326-1337. doi:10.1002/dta.2655
Sundström M, Pelander A, Simojoki K, Ojanperä I. Patterns of drug abuse among drug users with regular and irregular attendance for treatment as detected by comprehensive UHPLC-HR-TOF-MS. Drug Test Anal. 2016;8(1):39-45. doi:10.1002/dta.1818
Ojanperä IA, Heikman PK, Rasanen IJ. Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography-mass spectrometry. Ther Drug Monit. 2011;33(2):257-263. doi:10.1097/FTD.0b013e318208b693
Kankaanpää A, Ariniemi K, Heinonen M, Kuoppasalmi K, Gunnar T. Use of illicit stimulant drugs in Finland: a wastewater study in ten major cities. Sci Total Environ. 2014;487:696-702. doi:10.1016/j.scitotenv.2013.11.095
Van Nuijs ALN, Lai FY, Been F, et al. Multi-year interlaboratory exercises for the analysis of illicit drugs and metabolites in wastewater: development of a quality control system. Trends Anal Chem. 2018;103:34-43. doi:10.1016/j.trac.2018.03.009
Simmler LD, Buser TA, Donzelli M, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458-470. doi:10.1111/j.1476-5381.2012.02145.x
Rönkä S, Ollgren J, Alho H, et al. The prevalence of high-risk amphetamine and opioid use in Finland in 2017. Duodecim. 2020;136:927-935. (In Finnish; English abstract available).
Gunnar T, Kankaanpää A. The practical implications of wastewater-based illicit drug epidemiology. Curr Opin Environ Sci Health. 2019;9:49-57. doi:10.1016/j.coesh.2019.04.003
Roxburgh A, Sam B, Kriikku P, et al. Trends in MDMA-related mortality across four countries. Addiction. 2021;116(11):3094-3103. doi:10.1111/add.15493
Kankaanpää A, Meririnne E, Lillsunde P, Seppälä T. The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav. 1998;59(4):1003-1009. doi:10.1016/S0091-3057(97)00527-3
Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39(1):32-41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3
Bade R, White JM, Gerber C. How the recreational stimulant market has changed: case study in Adelaide, Australia 2016-2019. Sci Total Environ. 2021;757:143728. doi:10.1016/j.scitotenv.2020.143728
Uosukainen H, Ilomäki J, Kauhanen J, et al. Factors associated with buprenorphine compared to amphetamine abuse among clients seeking treatment in Finland. J Subst Abuse Treat. 2014;46(5):561-566. doi:10.1016/j.jsat.2014.01.004
EMCDDA European Monitoring Centre for Drugs and Drug Addiction. Drug-related Hospital Emergency Presentations in Europe: Update from the Euro-DEN Plus Expert Network, Technical Report. Publications Office of the European Union; 2020.
Van Amsterdam J, Pennings E, Van den Brink W. Fatal and non-fatal health incidents related to recreational ecstasy use. J Psychopharmacol. 2020;34(6):591-599. doi:10.1177/0269881119897559
Brett J, Wylie CE, Raubenheimer J, Isbister GK, Buckley NA. The relative lethal toxicity of pharmaceutical and illicit substances: a 16-year study of the Greater Newcastle Hunter Area, Australia. Br J Clin Pharmacol. 2019;85(9):2098-2107. doi:10.1111/bcp.14019