Waterborne Toxicity to Neotropical Invertebrates and Hazard of Cigarette Butt Leachates in Marine Environments.
Cigarette waste
Environmental risk assessment
Marine pollution
Species sensitivity distributions
Tobacco
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
07 Nov 2023
07 Nov 2023
Historique:
revised:
16
10
2023
received:
25
08
2023
accepted:
06
11
2023
pubmed:
7
11
2023
medline:
7
11
2023
entrez:
7
11
2023
Statut:
aheadofprint
Résumé
Cigarette butts (CBs) are the most common type of beach litter worldwide and contain a complex mixture of chemicals. Given the recent interest in this emerging problem, it is important to assess the toxicity of CB leachates to a range of species from different regions, sensitivities, and ecological traits. We evaluated the waterborne toxicity of smoked CB to tropical invertebrates. Leachates were prepared in the laboratory and characterized for trace elements (Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb), ammonia nitrogen, and polycyclic aromatic hydrocarbons. Then a set of toxicity tests with marine invertebrates was performed as follows: the brine shrimp Artemia sp. (nontoxic); the amphipod Tiburonella viscana (median lethal concentration [LC50] of 0.038 CB/L); the tanaid Monokalliapseudes schubarti (LC50 of 0.126 CB/L); the copepods Tisbe biminiensis (median effect concentration [EC50] of 0.038 CB/L) and Nitokra sp. (EC50 of 0.009 CB/L); pluteus stage larvae of the sea urchin Echinometra lucunter (EC50 of 0.152 CB/L); the sand dollar Mellita quinquiesperforata (EC50 of 0.054 CB/L); and D-stage larvae of the mussel Perna perna (EC50 of 0.005 CB/L). The predicted no-effect concentration was estimated using species sensitivity distribution, producing a 5th percentile hazard concentration of 0.015 CB/L. This preliminary threshold allowed us to estimate the potential impact of a single CB to 67 L of seawater via leaching, contributing to the advancement of knowledge regarding the contamination, toxicity, and ecological risks of cigarette waste. Environ Toxicol Chem 2023;00:1-11. © 2023 SETAC.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/13750-4
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2020/00068-8
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2020/03004-0
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2021/08471-9
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 137184/2020-4
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 301766/ 2019-3
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 304398/2021-7
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 308533/2018-6
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88887.685886/2022-00
Informations de copyright
© 2023 SETAC.
Références
Abessa, D. M. S., Ortega, A. S. B., Marinsek, G. P., Roselli, L. Y., Chelotti, L. D., & Perina, F. C. (2021). Acute toxicity of cigarette butts leachate on nauplii of Artemia sp. Brazilian. Journal of Animal and Environmental Research, 4(1), 659-670.
Abessa, D. M. S., & Sousa, E. C. P. M. (2003). Sensitivity of the amphipod Tiburonella viscana to K2Cr2O7. Brazilian Archives of Biology and Technology, 46(1), 53-55.
Associação Brasileira de Normas e Técnicas. (2012). NBR 15350. Ecotoxicologia aquática: Toxicidade crônica de curta duração-Método de ensaio com ouriço do mar (Echinodermata: Echinoidea).
Associação Brasileira de Normas e Técnicas. (2016). NBR 16530. 2016. Ecotoxicologia aquática-Toxicidade aguda-Método de ensaio com Artemia sp. (Crustacea, Brachiopoda).
Associação Brasileira de Normas e Técnicas. (2021a). NBR 16723. Ecotoxicologia aquática-Método de ensaio com copépodos marinhos e estuarinos (Copepoda, Crustacea).
Associação Brasileira de Normas e Técnicas. (2021b). NBR 15638. Ecotoxicologia aquática-Toxicidade aguda-Método de ensaio com anfípodos marinhos e estuarinos em sedimentos.
Associação Brasileira de Normas e Técnicas. (2022). NBR 16456. Ecotoxicologia aquática-Toxicidade crônica-Método de ensaio de curta duração com embriões de mexilhões (Mollusca-Bivalvia).
Akhbarizadeh, R., Dobaradaran, S., Parhizgar, G., Schmidt, T. C., & Mallaki, R. (2021). Potentially toxic elements leachates from cigarette butts into different types of water: A threat for aquatic environments and ecosystems? Environmental Research, 202, 111706.
Aldenberg, T., & Jaworska, J. S. (2000). Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety, 46(1), 1-18.
Araújo-Castro, C. M. V., Souza-Santos, L. P., Torreiro, A. G. A. G., & Garcia, K. S. (2009). Sensitivity of the marine benthic copepod Tisbe biminiensis (Copepoda, Harpacticoida) to potassium dichromate and sediment particle size. Brazilian Journal of Oceanography, 57(1), 33-41.
Araújo, M. C. B., & Costa, M. F. (2019a). A critical review of the issue of cigarette butt pollution in coastal environments. Environmental Research, 172, 137-149.
Araújo, M. C. B., & Costa, M. F. (2019b). From plant to waste: The long and diverse impact chain caused by tobacco smoking. International Journal of Environmental Research and Public Health, 16(15), 2690.
Araujo, G. S., Cruz, A. C. F., Gusso-Choueri, P. K., Saint'Pierre, T. D., Hauser-Davis, R. A., Martins, C. C., & Abessa, D. M. S. (2020). Sediment quality of a Ramsar site assessed by chemical and ecotoxicological approaches. Regional Studies in Marine Science, 35, 101145.
Barnes, R. L. (2011). Regulating the disposal of cigarette butts as toxic hazardous waste. Tobacco Control, 20(Suppl 1), i45-i48.
Bonanomi, G., Maisto, G., Marco, A. D., Cesarano, G., Zotti, M., Mazzei, P., Libralato, G., Staropoli, A., Siciliano, A., Filippis, F. D., Storia, A. L., Piccolo, A., Vinale, F., Crasto, A., Guida, M., Ercolini, D., & Incerti, G. (2020). The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. Environmental Pollution, 261, 114108.
Booth, D. J., Gribben, P., & Parkinson, K. (2015). Impact of cigarette butt leachate on tidepool snails. Marine Pollution Bulletin, 95(1), 362-364.
Burnham, K. P., & Anderson, D. R. (Eds.). (2002). Model selection and multimodel inference. Springer.
Campos, B. G., Figueiredo, J., Perina, F. C., Abessa, D. M. S., Loureiro, S., & Martins, R. (2022). Occurrence, effects and environmental risk of antifouling biocides (EU PT21): Are marine ecosystems threatened? Critical Reviews in Environmental Science and Technology, 52(18), 3179-3210.
Caridi, F., Sabbatini, A., Birarda, G., Costanzi, E., Giudici, G. D., Galeazzi, R., Medas, D., Mobbili, G., Ricciutelli, M., Ruello, M. L., Vaccari, L., & Negri, A. (2020). Cigarette butts, a threat for marine environments: Lessons from benthic foraminifera (Protista). Marine Environmental Research, 162, 105150.
Carvalho, C. E. V., Cavalcante, M. P. O., Gomes, M. P., Faria, V. V., & Rezende, C. E. (2001). Distribuição de metais pesados em mexilhões (Perna perna, L.) da Ilha de Santana, Macaé, SE, Brasil. Ecotoxicology and environmental Restoration, 4(1), 1-5.
Ceschini, P., & Chauchaix, R. (1980). Transfer of organochlorine pesticide residues into cigarette smoke as a function of tobacco blends and filter types. Beitrage zur Tabakforsdtung International, 10(2), 134-138.
Chapman, P. M., Fairbrother, A., & Brown, D. (1998). A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry, 17, 99-108.
Chevalier, Q., El Hadri, H., Petitjean, P., Bouhnik-Le Coz, M., Reynaud, S., Grassl, B., & Gigault, J. (2018). Nano-litter from cigarette butts: Environmental implications and urgent consideration. Chemosphere, 194, 125-130.
Dalgarno. (2018). ssdtools: A shiny web app to analyse species sensitivity distributions. Prepared by Poisson Consulting for the Ministry of the Environment, British Columbia. https://bcgov-env.shinyapps.io/ssdtools/
Damasceno, É. P., Figuerêdo, L. P., Pimentel, M. F., Loureiro, S., & Costa-Lotufo, L. V. (2017). Prediction of toxicity of zinc and nickel mixtures to Artemia sp. at various salinities: From additivity to antagonism. Ecotoxicology and Environmental Safety, 142, 322-329.
European Union. (2003). Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94.
Gouveia, N., Harayashiki, C. A. Y., Márquez, F., Lourenço, R. A., Taniguchi, S., & Castro, Í. B. (2022). Mollusc shell shape as pollution biomarkers: Which is the best biological model? Marine Pollution Bulletin, 179, 113663.
Green, A. L. R., Putschew, A., & Nehls, T. (2014). Littered cigarette butts as a source of nicotine in urban waters. Journal of Hydrology, 519, 3466-3474.
Green, D. S., Almroth, B. C., Altman, R., Bergmann, M., Gündoğdu, S., Warrier, A. K., Boots, B., Walker, T. R., Krieger, A., & Syberg, K. (2023). Time to kick the butt of the most common litter item in the world: Ban cigarette filters. Science of the Total Environment, 865, 161256.
Green, D. S., Tongue, A. D. W., & Boots, B. (2022). The ecological impacts of discarded cigarette butts. Trends in Ecology & Evolution, 37, 183-192.
Ip, Y. K., Chew, S. F., & Randall, D. J. (2001). Ammonia toxicity, tolerance, and excretion. fish. Physiology, 20, 109-148.
Karaconji, I. B. (2005). Facts about nicotine toxicity. Archives of Industrial Hygiene and Toxicology, 56, 363-371.
Koroleff, F. (1966). Direct spectrophotometric determination of ammonia in precipitation. Tellus, 18, 562-565.
Kurmus, H., & Mohajerani, A. (2020). The toxicity and valorization options of cigarette butts. Waste Management, 104, 104-118.
Kwok, K. W. H., Leung, K. M. Y., Chu, V. K. H., Lam, P. K. S., Morritt, D., Maltby, L., Brock, T. C. M., Van den Brink, P. J., Warne, M. S. J., & Crane, M. (2007). Comparison of tropical and temperate freshwater species sensitivities to chemicals: Implications for deriving safe extrapolation factors. Integrated Environmental Assessment and Management, 3(1), 49-67.
Laitano, K., Gonçalves, C., & Resgalla, Jr., C. (2008). Viabilidade do uso da bolacha-do-mar Mellita quinquiesperforata como organismo teste. Journal of the Brazilian Society of Ecotoxicology, 3(1), 9-14.
Lima, C. F., dos Santos Pinto, M. A., Choueri, R. B., Moreira, L. B., & Castro, Í. B. (2021). Occurrence, characterization, partition, and toxicity of cigarette butts in a highly urbanized coastal area. Waste Management, 131, 10-19.
Lotufo, G. R., & Abessa, D. M. S. (2002). Testes de toxicidade com sedimentos total e água intersticial estuarinos utilizando copépodos bentônicos. In I. A. Nascimento, E. C. P. M. Sousa, & M. G. Nipper (Eds.), Métodos em ecotoxicologia marinha: Aplicações no Brasil (Vol. 13, pp. 151-162). Artes Gráficas e Indústria.
Lucia. (2013).
Lucia, G., Giuliani, M. E., d'Errico, G., Booms, E., Benedetti, M., Carlo, M. D., Fattorini, D., Gorbi, S., & Regoli, F. (2023). Toxicological effects of cigarette butts for marine organisms. Environment International, 171, 107733.
Mandelli, W. G., Choueri, R. B., Castro, Í. B., & Moreira, L. B. (2022). Potential toxicity of contaminants leached from cigarette butts in coastal environments. Ecotoxicology and Environmental Contamination, 17, 85-98.
Melo, S., & Nipper, M. (2007). Sediment toxicity tests using the burrowing amphipod Tiburonella viscana (Amphipoda: Platyischnopidae). Ecotoxicology and Environmental Safety, 66, 412-420.
Micevska, T., Warne, M. S. J., Pablo, F., & Patra, R. (2006). Variation in, and causes of, toxicity of cigarette butts to a cladoceran and microtox. Archives of Environmental Contamination and Toxicology, 50, 205-212.
Moerman, J., & Potts, G. (2011). Analysis of metals leached from smoked cigarette litter. Tobacco Control, 20(Suppl 1), i30-i35.
Moriwaki, H., Kitajima, S., & Katahira, K. (2009). Waste on the roadside, “poi-sute” waste: Its distribution and elution potential of pollutants into environment. Waste Management, 29, 1192-1197.
Mottola, L. S. M., Schork, G., & Resgalla, Jr., C. (2009). Revisão da metodologia e sensiblidade do tanaidáceo Kalliapseudes schubartii em ensaios com substâncias de referência. Journal of the Brazilian Society of Ecotoxicology, 4(1-3), 15-20.
Mussalo-Rauhamaa, H., Leppänen, A., Salmela, S. S., & Pyysalo, H. (1986). Cigarettes as a source of some trace and heavy metals and pesticides in man. Archives of Environmental Health: An International Journal, 41(1), 49-55.
Novotny, T. E., Hardin, S. N., Hovda, L. R., Novotny, D. J., McLean, M. K., & Khan, S. (2011). Tobacco and cigarette butt consumption in humans and animals. Tobacco Control, 20(Suppl 1), i17-i20.
Paniz, F. P., Pedron, T., Freire, B. M., Torres, D. P., Silva, F. F., & Batista, B. L. (2018). Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs. Analytical Methods, 10, 4094-4103.
Pereira, T. M., Merçon, J., Passos, L. S., Coppo, G. C., Lopes, T. O. M., Cabral, D. S., Scherer, R., & Chippari-Gomes, A. R. (2018). Effects of the water-soluble fraction of diesel oil (WSD) on the fertilization and development of a sea urchin (Echinometra lucunter). Ecotoxicology and Environmental Safety, 162, 59-62.
Pörtner, H.-O. (2012). Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Marine Ecology Progress Series, 470, 273-290.
Posthuma, L., Suter, II, G. W., & Traas, T. P. (2002). Species sensitivity distributions in ecotoxicology. CRC Press.
Ribeiro, V. V., Lopes, T. C., Pinto, M. A. S., Póvoa, A. A., Corrêa, V. R., De-la-Torre, G. E., Dobaradaran, S., Green, D. S., Szklo, A. S., & Castro, Í. B. (2022). Cigarette butts in two urban areas from Brazil: Links among environmental impacts, demography and market. Environmental Research, 213, 113730.
Ribeiro, V. V., Pinto, M. A., Mesquita, R. K., Moreira, L. B., Costa, M. F., & Castro, Í. B. (2021). Marine litter on a highly urbanized beach at Southeast Brazil: A contribution to the development of litter monitoring programs. Marine Pollution Bulletin, 163, 111978.
Savino, J. F., & Tanabe, L. L. (1989). Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex. Bulletin of Environmental Contamination and Toxicology, 42, 778-784.
Slaughter, E., Gersberg, R. M., Watanabe, K., Rudolph, J., Stransky, C., & Novotny, T. E. (2011). Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tobacco Control, 20(Suppl 1), i25-i29.
Soleimani, F., Dobaradaran, S., De-la-Torre, G. E., Schmidt, T. C., & Saeedi, R. (2022). Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. Science of the Total Environment, 813, 152667. https://doi.org/10.1016/j.scitotenv.2021.152667
Soleimani, F., Dobaradaran, S., Vazirizadeh, A., Mohebbi, g, Ramavandi, B., De-la-Torre, G. E., Nabipour, I., Schmidt, T. C., Novotny, T. E., Maryamabadi, A., & Kordrostami, Z. (2023). Chemical contents and toxicity of cigarette butts leachates in aquatic environment: A case study from the Persian Gulf region. Chemosphere, 311, 137049.
Staples, C. A., Woodburn, K. B., Klecka, G. M., Mihaich, E. M., Hall, A. T., Ortego, L., Caspers, N., & Hentges, S. G. (2008). Comparison of four species sensitivity distribution methods to calculate predicted no effect concentrations for bisphenol A. Human and Ecological Risk Assessment: An International Journal, 14, 455-478.
Thorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit species sensitivity distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082
Torkashvand, J., Farzadkia, M., Sobhi, H. R., & Esrafili, A. (2020). Littered cigarette butt as a well-known hazardous waste: A comprehensive systematic review. Journal of Hazardous Materials, 383, 121242.
US Environmental Protection Agency. (1998). Guidelines for ecological risk assessment (EPA/630/R-95/002F).
US Environmental Protection Agency. (2023). National recommended water quality criteria-Aquatic life criteria table. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table#table
Veiga, L. F., & Vital, N. (2002). Teste de toxicidade aguda com o microcrustáceo Artemia sp. In I. A. Nascimento, E. C. P. M. Sousa, & M. G. Nipper (Eds.), Métodos em ecotoxicologia marinha (Vol. 13, pp. 111-122). Aplicações no Brasil, Artes Gráficas e Indústria.
Wright, S. L., Rowe, D., Reid, M. J., Thomas, K. V., & Galloway, T. S. (2015). Bioaccumulation and biological effects of cigarette litter in marine worms. Scientific Reports, 5(1), 1-10.
Xu, E. G., Richardot, W. H., Li, S., Buruaem, L., Wei, H.-H., Dodder, N. G., Schick, S. F., Novotny, T., Schlenk, D., & Gersberg, R. M. (2019). Assessing toxicity and in vitro bioactivity of smoked cigarette leachate using cell-based assays and chemical analysis. Chemical Research in Toxicology, 32(8), 1670-1679.
Zaroni, L. P., Abessa, D. M. S., Lotufo, G. R., Sousa, E. C. P. M., & Pinto, Y. A. (2005). Toxicity testing with embryos of marine mussels: Protocol standardization for Perna perna (Linnaeus, 1758). Bulletin of Environmental Contamination and Toxicology, 74, 793-800.