Expression of human BRCA2 in Saccharomyces cerevisiae complements the loss of RAD52 in double-strand break repair.

BRCA2 Double-strand break Homologous recombination repair Ionizing radiation Rad52 Saccharomyces cerevisiae

Journal

Current genetics
ISSN: 1432-0983
Titre abrégé: Curr Genet
Pays: United States
ID NLM: 8004904

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 09 10 2023
accepted: 31 10 2023
revised: 30 10 2023
pubmed: 7 11 2023
medline: 7 11 2023
entrez: 7 11 2023
Statut: ppublish

Résumé

BRCA2 is a tumor-suppressor gene that is normally expressed in the breast and ovarian tissue of mammals. The BRCA2 protein mediates the repair of double-strand breaks (DSBs) using homologous recombination, which is a conserved pathway in eukaryotes. Women who express missense mutations in the BRCA2 gene are predisposed to an elevated lifetime risk for both breast cancer and ovarian cancer. In the present study, the efficiency of human BRCA2 (hBRCA2) in DSB repair was investigated in the budding yeast Saccharomyces cerevisiae. While budding yeast does not possess a true BRCA2 homolog, they have a potential functional homolog known as Rad52, which is an essential repair protein involved in mediating homologous recombination using the same mechanism as BRCA2 in humans. Therefore, to examine the functional overlap between Rad52 in yeast and hBRCA2, we expressed the wild-type hBRCA2 gene in budding yeast with or without Rad52 and monitored ionizing radiation resistance and DSB repair efficiency. We found that the expression of hBRCA2 in rad52 mutants increases both radiation resistance and DSB repair frequency compared to cells not expressing BRCA2. Specifically, BRCA2 improved the protection against ionizing radiation by at least 1.93-fold and the repair frequency by 6.1-fold. In addition, our results show that homology length influences repair efficiency in rad52 mutant cells, which impacts BRCA2 mediated repair of DSBs. This study provides evidence that S. cerevisiae could be used to monitor BRCA2 function, which can help in understanding the genetic consequences of BRCA2 variants and how they may contribute to cancer progression.

Identifiants

pubmed: 37934232
doi: 10.1007/s00294-023-01278-y
pii: 10.1007/s00294-023-01278-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

301-308

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Bellè F, Mercatanti A, Lodovichi S, Congregati C, Guglielmi C, Tancredi M, Caligo MA, Cervelli T, Galli A (2022) Validation and data-integration of yeast-based assays for functional classification of BRCA1 missense variants. Int J Mol Sci. https://doi.org/10.3390/ijms23074049
doi: 10.3390/ijms23074049 pubmed: 35628113 pmcid: 9141814
Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science. https://doi.org/10.1126/science.277.5330.1259
doi: 10.1126/science.277.5330.1259 pubmed: 9297238 pmcid: 3039837
Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231(1):3–14. https://doi.org/10.1002/jcp.25048
doi: 10.1002/jcp.25048 pubmed: 26040249 pmcid: 4994891
Cervelli T, Lodovichi S, Bellè F, Galli A (2020) Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. Microb Cell. https://doi.org/10.15698/mic2020.07.721
doi: 10.15698/mic2020.07.721 pubmed: 32656256 pmcid: 7328678
Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. https://doi.org/10.1002/em.22087
doi: 10.1002/em.22087 pubmed: 28485537 pmcid: 5474181
Clear AD, Manthey GM, Lewis O, Lopez IY, Rico R, Owens S, Negritto MC, Wolf EW, Xu J, Kenjić N, Perry JJP, Adamson AW, Neuhausen SL, Bailis AM (2020) Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast. Microb Cell. https://doi.org/10.15698/mic2020.10.732
doi: 10.15698/mic2020.10.732 pubmed: 33015141 pmcid: 7517009
Costanza A, Guaragnella N, Bobba A, Manzari C, L’Abbate A, Giudice CL, Picardi E, D’Erchia AM, Pesole G, Giannattasio S (2022) Yeast as a model to unravel new BRCA2 functions in cell metabolism. Front Oncol. https://doi.org/10.3389/fonc.2022.908442,12,908442
doi: 10.3389/fonc.2022.908442,12,908442 pubmed: 35734584 pmcid: 9207209
Danilowicz C, Vietorisz E, Godoy-Carter V, Prévost C, Prentiss M (2021) Influences of ssDNA-RecA filament length on the fidelity of homologous recombination. J Mol Biol. https://doi.org/10.1016/j.jmb.2021.167143
doi: 10.1016/j.jmb.2021.167143 pubmed: 34242669
Erdeniz N, Mortensen UH, Rothstein R (1997) Cloning-free PCR-based allele replacement methods. Genome Res. https://doi.org/10.1101/gr.7.12.1174
doi: 10.1101/gr.7.12.1174 pubmed: 9414323 pmcid: 310678
Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61. https://doi.org/10.1146/annurev-med-051010-162644
doi: 10.1146/annurev-med-051010-162644 pubmed: 22248320 pmcid: 3656720
Ho CK, Mazón G, Lam AF, Symington LS (2010) Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell. https://doi.org/10.1016/j.molcel.2010.11.016
doi: 10.1016/j.molcel.2010.11.016 pubmed: 21172663 pmcid: 3021384
Hoffman-Andrews L (2017) The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. J Law Biosci. https://doi.org/10.1093/jlb/lsx038
doi: 10.1093/jlb/lsx038 pubmed: 29868193
Holloman WK (2013) Unraveling the mechanism of BRCA2 in homologous recombination. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.2096
doi: 10.1038/nsmb.2096
Huang R, Zhou PK (2021) DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-021-00648-7
doi: 10.1038/s41392-021-00648-7 pubmed: 34961761 pmcid: 8712507
Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell. https://doi.org/10.1016/S0092-8674(01)00430-5
doi: 10.1016/S0092-8674(01)00430-5 pubmed: 11461702
Huszno J, Pigłowski W, Mazur M, Pamuła-Piłat J, Zajkowicz A, Kierzkowska AF, Wojciechowska MO (2021) BRCA1/BRCA2 variants of uncertain significance in clinical practice: a case report. Mol Clin Oncol. https://doi.org/10.3892/mco.2021.2385
doi: 10.3892/mco.2021.2385 pubmed: 34548921 pmcid: 8447178
Ishii A, Kurosawa A, Saito S, Adachi N (2014) Analysis of the role of homology arms in gene-targeting vectors in human cells. PLoS One 9(9): e108236. https://doi.org/10.1371/journal.pone.0108236
doi: 10.1371/journal.pone.0108236 pubmed: 25250686 pmcid: 4176728
Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature. https://doi.org/10.1038/nature09399
doi: 10.1038/nature09399 pubmed: 20729832 pmcid: 2952063
Klovstad M, Abdu U, Schüpbach T (2008) Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint. PLoS Genet. https://doi.org/10.1371/journal.pgen.0040031
doi: 10.1371/journal.pgen.0040031 pubmed: 18266476 pmcid: 2233675
Kuznetsov SG, Liu P, Sharan SK (2008) Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nat Med. https://doi.org/10.1038/nm.1719
doi: 10.1038/nm.1719 pubmed: 18607349 pmcid: 2640324
Kuznetsov SG, Chang S, Sharan SK (2010) Functional analysis of human BRCA2 variants using a mouse embryonic stem cell-based assay. Methods Mol Biol. https://doi.org/10.1007/978-1-60761-759-4_16
doi: 10.1007/978-1-60761-759-4_16 pubmed: 20721749 pmcid: 6669890
Liu J, Doty T, Gibson B, Heyer WD (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17(10):1260–1262. https://doi.org/10.1038/nsmb.1904
doi: 10.1038/nsmb.1904 pubmed: 20729859 pmcid: 2952495
Liu C, Wu P, Zhang A, Mao X (2021) Advances in rodent models for breast cancer formation, progression, and therapeutic testing. Front Oncol. https://doi.org/10.3389/fonc.2021.593337
doi: 10.3389/fonc.2021.593337 pubmed: 35769548 pmcid: 8739965
Lodovichi S, Bellè F, Mercatanti A, Spugnesi L, Cozzani C, Caligo MA, Cervelli T, Galli A (2022) RAD52 influences the effect of BRCA1/2 missense variants on homologous recombination and gene reversion in Saccharomyces cerevisiae. FEMS Yeast Res 22(1):foac021. https://doi.org/10.1093/femsyr/foac021
doi: 10.1093/femsyr/foac021 pubmed: 35472165
Manthey GM, Bailis AM (2010) RAD51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One. https://doi.org/10.1371/journal.pone.0011889
doi: 10.1371/journal.pone.0011889 pubmed: 20686691 pmcid: 2912366
Manthey GM, Clear AD, Liddell LC, Negritto MC, Bailis AM (2017) Homologous recombination in budding yeast expressing the human RAD52 gene reveals a Rad51-independent mechanism of conservative double-strand break repair. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1228
doi: 10.1093/nar/gkw1228 pubmed: 27923995
McCulloch RD, Read LR, Baker MD (2003) Strand invasion and DNA synthesis from the two 3′ ends of a double-strand break in Mammalian cells. Genetics. https://doi.org/10.1093/genetics/163.4.1439
doi: 10.1093/genetics/163.4.1439 pubmed: 12702687 pmcid: 1462519
Nickoloff JA, Haber JE (2001) Mating-type control of DNA repair and recombination in Saccharomyces cerevisiae. Contemp Cancer Res. https://doi.org/10.1007/978-1-59259-095-7_5
doi: 10.1007/978-1-59259-095-7_5
Nogueira A, Fernandes M, Catarino R, Medeiros R (2019) Rad52 functions in homologous recombination and its importance on genomic integrity maintenance and cancer therapy. Cancers. https://doi.org/10.3390/cancers11111622
doi: 10.3390/cancers11111622 pubmed: 31652722 pmcid: 6893724
Petrucelli N, Daly MB, Feldman GL (2010) Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. https://doi.org/10.1097/GIM.0b013e3181d38f2f
doi: 10.1097/GIM.0b013e3181d38f2f pubmed: 20216074
Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. https://doi.org/10.1038/nrc3181
doi: 10.1038/nrc3181 pubmed: 22193408 pmcid: 4972490
San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. https://doi.org/10.1146/annurev.biochem.77.061306.125255
doi: 10.1146/annurev.biochem.77.061306.125255 pubmed: 18275380
Shinohara A, Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. https://doi.org/10.1038/34943
doi: 10.1038/34943 pubmed: 9450759
Spugnesi L, Balia C, Collavoli A, Falaschi E, Quercioli V, Caligo MA, Galli A (2013) Effect of the expression of BRCA2 on spontaneous homologous recombination and DNA damage-induced nuclear foci in Saccharomyces cerevisiae. Mutagenesis. https://doi.org/10.1093/mutage/ges069
doi: 10.1093/mutage/ges069 pubmed: 23328489
Vierstraete J, Willaert A, Vermassen P, Coucke PJ, Vral A, Claes KBM (2017) Accurate quantification of homologous recombination in zebrafish: Brca2 deficiency as a paradigm. Sci Rep. https://doi.org/10.1038/s41598-017-16725-3
doi: 10.1038/s41598-017-16725-3 pubmed: 29184099 pmcid: 5705637
Vignard J, Mirey G, Salles B (2013) Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother oncol 108(3):362–369. https://doi.org/10.1016/j.radonc.2013.06.013
doi: 10.1016/j.radonc.2013.06.013 pubmed: 23849169
Vítor AC, Huertas P, Legube G, de Almeida SF (2020) Studying DNA double-strand break repair: an ever-growing toolbox. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.00024
doi: 10.3389/fmolb.2020.00024 pubmed: 32154266 pmcid: 7047327
Zhou Q, Kojic M, Holloman WK (2009) DNA-binding domain within the Brh2 N terminus is the primary interaction site for association with DNA. J Biol Chem. https://doi.org/10.1074/jbc.M809226200
doi: 10.1074/jbc.M809226200 pubmed: 20037141 pmcid: 2825427

Auteurs

Sherrice Law (S)

College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA.

Hannah Park (H)

College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA.

Eyar Shany (E)

Columbia University, New York, NY, 10027, USA.

Sumer Sandhu (S)

University of Tennessee College of Medicine, Memphis, TN, 38163, USA.

Mayukha Vallabhaneni (M)

College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA.

Damon Meyer (D)

College of Health Sciences, California Northstate University, Rancho Cordova, CA, 95670, USA. damon.meyer@cnsu.edu.

Classifications MeSH