Acetylation of homogalacturonan and rhamnogalacturonan-I is catalyzed by a suite of trichome birefringence-like proteins.
Arabidopsis thaliana
TBL
acetyltransferase
cell wall
homogalacturonan
pectin
rhamnogalacturonan-I
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
07 Nov 2023
07 Nov 2023
Historique:
revised:
20
10
2023
received:
29
06
2023
accepted:
29
10
2023
medline:
7
11
2023
pubmed:
7
11
2023
entrez:
7
11
2023
Statut:
aheadofprint
Résumé
Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Energy
ID : DE-FG02-03ER15415
Informations de copyright
© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Ahmed, J., Kumar, K. & Goyal, A. (2023) A thermotolerant and pH stable rhamnogalacturonan acetylesterase (CtPae12B), a family 12 carbohydrate esterase from Clostridium thermocellum with broad substrate specificity. International Journal of Biological Macromolecules, 226, 1560-1569.
Amos, R.A., Atmodjo, M.A., Huang, C., Gao, Z., Venkat, A., Taujale, R. et al. (2022) Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. Nature Plants, 8, 1289-1303.
Anderson, C.T. (2016) We be jammin': an update on pectin biosynthesis, trafficking and dynamics. Journal of Experimental Botany, 67, 495-502.
Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R. et al. (2010) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology, 153, 590-602.
Bolvig, P.U., Pauly, M., Orfila, C., Scheller, H.V. & Schnorr, K. (2003) Sequence analysis and characterization of a novel pectin acetyl esterase from Bacillus subtilis. In: Voragen, F., Schols, H. & Visser, R. (Eds.) Advances in pectin and pectinase research. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 315-330.
Caffall, K.H. & Mohnen, D. (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344, 1879-1900.
Chiniquy, D., Underwood, W., Corwin, J., Ryan, A., Szemenyei, H., Lim, C.C. et al. (2019) PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. The Plant Journal, 100, 1022-1035.
de Souza, A., Hull, P.A., Gille, S. & Pauly, M. (2014) Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. Planta, 240, 1123-1138.
Du, J., Kirui, A., Huang, S., Wang, L., Barnes, W.J., Kiemle, S.N. et al. (2020) Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. Plant Cell, 32, 3576-3597.
Dumont, M., Lehner, A., Bouton, S., Kiefer-Meyer, M.C., Voxeur, A., Pelloux, J. et al. (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Annals of Botany, 114, 1177-1188.
Egelund, J., Petersen, B.L., Motawia, M.S., Damager, I., Faik, A., Olsen, C.E. et al. (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell, 18, 2593-2607.
Engle, K.A., Amos, R.A., Yang, J.Y., Glushka, J., Atmodjo, M.A., Tan, L. et al. (2022) Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. The Plant Journal, 109, 1441-1456.
Gille, S., de Souza, A., Xiong, G., Benz, M., Cheng, K., Schultink, A. et al. (2011) O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell, 23, 4041-4053.
Gou, J.Y., Miller, L.M., Hou, G., Yu, X.H., Chen, X.Y. & Liu, C.J. (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell, 24, 50-65.
Harholt, J., Jensen, J.K., Sørensen, S.O., Orfila, C., Pauly, M. & Scheller, H.V. (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiology, 140, 49-58.
Harholt, J., Suttangkakul, A. & Scheller, H.V. (2010) Biosynthesis of pectin. Plant Physiology, 153, 384-395.
Ishii, T. (1997) O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiology, 113, 1265-1272.
Ishikawa, M., Kuroyama, H., Takeuchi, Y. & Tsumuraya, Y. (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta, 210, 782-791.
Jensen, J.K., Sørensen, S.O., Harholt, J., Geshi, N., Sakuragi, Y., Møller, I. et al. (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell, 20, 1289-1302.
Kim, S.J., Held, M.A., Zemelis, S., Wilkerson, C. & Brandizzi, F. (2015) CGR2 and CGR3 have critical overlapping roles in pectin methylesterification and plant growth in Arabidopsis thaliana. The Plant Journal, 82, 208-220.
Komalavilas, P. & Mort, A.J. (1989) The acetylation at O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydrate Research, 189, 261-272.
Koubala, B.B., Kansci, G., Mbome, L.I., Crepeau, M.-J., Thibault, J.-F. & Ralet, M.-C. (2008) Effect of extraction conditions on some physicochemical characteristics of pectins from “Amelioree” and “mango” mango peels. Food Hydrocolloids, 22, 1345-1351.
Krupková, E., Immerzeel, P., Pauly, M. & Schmülling, T. (2007) The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant DEVELOPMENT. The Plant Journal, 50, 735-750.
Lee, C., O'Neill, M.A., Tsumuraya, Y., Darvill, A.G. & Ye, Z.-H. (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant & Cell Physiology, 48, 1624-1634.
Lerouge, P., O'Neill, M.A., Darvill, A.G. & Albersheim, P. (1993) Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydrate Research, 243, 359-371.
Liu, L., Hsia, M.M., Dama, M., Vogel, J. & Pauly, M. (2016) A xyloglucan backbone 6-O-acetyltransferase from Brachypodium distachyon modulates xyloglucan xylosylation. Molecular Plant, 9, 615-617.
Liwanag, A.J., Ebert, B., Verhertbruggen, Y., Rennie, E.A., Rautengarten, C., Oikawa, A. et al. (2012) Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell, 24, 5024-5036.
Luis, A.S., Briggs, J., Zhang, X., Farnell, B., Ndeh, D., Labourel, A. et al. (2018) Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 3, 210-219.
Lunin, V.V., Wang, H.T., Bharadwaj, V.S., Alahuhta, M., Peña, M.J., Yang, J.Y. et al. (2020) Molecular mechanism of polysaccharide acetylation by the Arabidopsis xylan O-acetyltransferase XOAT1. Plant Cell, 32, 2367-2382.
Macquet, A., Ralet, M.C., Kronenberger, J., Marion-Poll, A. & North, H.M. (2007) In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant & Cell Physiology, 48, 984-999.
Miao, Y., Li, H.Y., Shen, J., Wang, J. & Jiang, L. (2011) QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. Journal of Experimental Botany, 62, 5063-5078.
Mouille, G., Ralet, M.C., Cavelier, C., Eland, C., Effroy, D., Hématy, K. et al. (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. The Plant Journal, 50, 605-614.
Pauly, M. & Ramirez, V. (2018) New insights into wall polysaccharide O-acetylation. Frontiers in Plant Science, 9, 1210.
Perrone, P., Hewage, C.M., Thomson, A.R., Bailey, K., Sadler, I.H. & Fry, S.C. (2002) Patterns of methyl and O-acetyl esterification in spinach pectins: new complexity. Phytochemistry, 60, 67-77.
Pogorelko, G., Lionetti, V., Fursova, O., Sundaram, R.M., Qi, M., Whitham, S.A. et al. (2013) Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiology, 162, 9-23.
Remoroza, C., Wagenknecht, M., Gu, F., Buchholt, H.C., Moerschbacher, B.M., Schols, H.A. et al. (2014) A Bacillus licheniformis pectin acetylesterase is specific for homogalacturonans acetylated at O-3. Carbohydrate Polymers, 107, 85-93.
Renard, C.M.G.C. & Jarvis, M.C. (1999) Acetylation and methylation of homogalacturonans 1: optimization of the reaction and characterization of the products. Carbohydrate Polymers, 39, 201-207.
Riley, L.M., Weadge, J.T., Baker, P., Robinson, H., Codée, J.D., Tipton, P.A. et al. (2013) Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. The Journal of Biological Chemistry, 288, 22299-22314.
Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P. et al. (2013) Organelle pH in the Arabidopsis endomembrane system. Molecular Plant, 6, 1419-1437.
Sinclair, S.A., Larue, C., Bonk, L., Khan, A., Castillo-Michel, H., Stein, R.J. et al. (2017) Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. Current Biology, 27, 3403-3418.
Stranne, M., Ren, Y., Fimognari, L., Birdseye, D., Yan, J., Bardor, M. et al. (2018) TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. The Plant Journal, 96, 772-785.
Sychantha, D., Little, D.J., Chapman, R.N., Boons, G.J., Robinson, H., Howell, P.L. et al. (2018) PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. Nature Chemical Biology, 14, 79-85.
Takenaka, Y., Kato, K., Ogawa-Ohnishi, M., Tsuruhama, K., Kajiura, H., Yagyu, K. et al. (2018) Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nature Plants, 4, 669-676.
Thibault, J.-F., Renard, C.M.G.C., Axelos, M.A.V., Roger, P. & Crepeau, M.-J. (1993) Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydrate Research, 238, 271-286.
Urbanowicz, B.R., Pena, M.J., Moniz, H.A., Moremen, K.W. & York, W.S. (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant Cell, 80, 197-206.
Vogel, J.P., Raab, T.K., Somerville, C.R. & Somerville, S.C. (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. The Plant Journal, 40, 968-978.
Whitcombe, A.J., O'Neill, M.A., Steffan, W., Albersheim, P. & Darvill, A.G. (1995) Structural characterization of the pectic polysaccharide, rhamnogalacturonan-II. Carbohydrate Research, 271, 15-29.
Williamson, G., Faulds, C.B., Matthew, J.A., Archer, D.B., Morris, V.J., Brownsey, G.J. et al. (1990) Gelation of sugarbeet and citrus pectins using enzymes extracted from orange peel. Carbohydrate Polymers, 13, 387-397.
Yang, Y. & Anderson, C.T. (2020) Biosynthesis, localization, and function of pectins in plants. In: Kontogiorgos, V. (Ed.) Pectins: technological and physiological properties. Switzerland: Springer Nature, pp. 1-15.
Zhong, R., Cui, D., Phillips, D.R., Richardson, E.A. & Ye, Z.-H. (2020) A group of O-acetyltransferases catalyze xyloglucan backbone acetylation and can alter xyloglucan xylosylation pattern and plant growth when expressed in Arabidopsis. Plant & Cell Physiology, 61, 1064-1079.
Zhong, R., Cui, D. & Ye, Z.-H. (2017) Regiospecific acetylation of xylan is mediated by a group of DUF231-containing O-acetyltransferases. Plant & Cell Physiology, 58, 2126-2138.
Zhong, R., Cui, D. & Ye, Z.-H. (2018a) Members of the DUF231 family are O-acetyltransferases catalyzing 2-O- and 3-O-acetylation of mannan. Plant & Cell Physiology, 59, 2339-2349.
Zhong, R., Cui, D. & Ye, Z.-H. (2018b) Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. Planta, 248, 1159-1171.
Zhong, R., Peña, M.J., Zhou, G.-K., Nairn, C.J., Wood-Jones, A., Richardson, E.A. et al. (2005) Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell, 17, 3390-3408.
Zhong, R., Teng, Q., Haghighat, M., Yuan, Y., Furey, S.T., Dasher, R.L. et al. (2017) Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant & Cell Physiology, 58, 156-174.