Immune Response Profiling of Cocktails of Brugia malayi Vaccine Candidates DIM-1, Calponin and Troponin 1 in BALB/c Mice.
BALB/c mice
Brugia malayi
DIM-1/Troponin-1/Caplonin cocktails
IgG subclasses and IgE
Th1/Th2 cytokines
Journal
Acta parasitologica
ISSN: 1896-1851
Titre abrégé: Acta Parasitol
Pays: Switzerland
ID NLM: 9301947
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
10
02
2023
accepted:
03
10
2023
medline:
27
11
2023
pubmed:
8
11
2023
entrez:
7
11
2023
Statut:
ppublish
Résumé
In search of a vaccine for the control of human lymphatic filariasis (LF) caused by Wuchereria bancrofti, Brugia malayi and B. timori, we identified three parasite-specific potential candidates: the disorganized muscle protein-1 (D), calponin (C) and troponin 1 (T) in B. malayi adult worm. In the present study, we investigated the immune response profile of the cocktails of the recombinant D, T and C proteins. Groups of BALB/c mice were immunized with individual rproteins or their cocktails DT, TC, DC and DTC, and the immunogen-specific IgG and its subclasses and IgE were determined. Cells from the immunized animals were challenged in vitro with the respective rproteins and cocktails and the release of nitric oxide (NO) from macrophages and Th1 and Th2 cytokines from splenocytes were determined. Among the immunized groups, DTC elicited comparatively a stronger response which included augmented release of NO, Th1 (IL-1β, IL-2, IFN-γ and TNF-α) and Th2 (IL-4, IL-6, IL-10 and TGF-β) cytokines, and increased levels of immunogen-specific IgG, IgG1 and IgG2b and low levels of immunogen-specific IgG2a and IgE and the Th2 cytokine IL-13. Immune responses that play important role in host protection were elicited strongly by DTC cocktail compared to the individual rproteins or DT, TC and DC cocktails. The findings provide a sound rationale for further studies on DTC cocktail as a vaccine candidate for the control of LF.
Identifiants
pubmed: 37935895
doi: 10.1007/s11686-023-00725-7
pii: 10.1007/s11686-023-00725-7
doi:
Substances chimiques
Troponin I
0
Cytokines
0
Immunoglobulin G
0
Vaccines
0
Immunoglobulin E
37341-29-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
929-936Subventions
Organisme : Human Resource Development Group
ID : (21(0963)/13/EMR-II)
Informations de copyright
© 2023. The Author(s) under exclusive licence to Witold Stefański Institute of Parasitology, Polish Academy of Sciences.
Références
WHO (2021) Global Programme to Eliminate Lymphatic Filariasis: Progress Report, 2021. https://www.who.int/publications/i/item/who-wer9741-513-524 . Accessed on 23 December 2022.
Babu S, Nutman TB (2014) Immunology of lymphatic filariasis. Parasite Immunol 36:338–346. https://doi.org/10.1111/pim.12081
doi: 10.1111/pim.12081
pubmed: 24134686
pmcid: 3990654
Raju K, Jambulingam P, Sabesan S, Vanamail P (2010) Lymphatic filariasis in India: epidemiology and control measures. J Postgrad Med 56:232–238. https://doi.org/10.4103/0022-3859.68650
doi: 10.4103/0022-3859.68650
pubmed: 20739779
Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. Lancet 376:1175–1185. https://doi.org/10.1017/s0031182000065835
doi: 10.1017/s0031182000065835
pubmed: 20739055
WHO (2017) Global Programme to Eliminate Lymphatic Filariasis: Progress Report, 2017. https://www.who.int/publications-detail-redirect/who-wer9344-589-602 . Accessed on 23 December 2022.
Rao RU, Samarasekera SD, Nagodavithana KC, Dassanayaka TDM, Punchihewa MW, Ranasinghe USB, Weil GJ (2017) Reassessment of areas with persistent Lymphatic Filariasis nine years after cessation of mass drug administration in Sri Lanka. PLoS Negl Trop Dis 11:e0006066. https://doi.org/10.1371/journal.pntd.0006066
doi: 10.1371/journal.pntd.0006066
pubmed: 29084213
pmcid: 5679644
Kulkarni P, Thomas JJ, Dowerah J, Narayana Murthy MR, Ravikumar K (2020) Mass drug administration programme against lymphatic filariasis-an evaluation of coverage and compliance in a northern Karnataka district, India. Clinical Epidemiology and Global Health 8:87–90. https://doi.org/10.1016/j.cegh.2019.04.013
doi: 10.1016/j.cegh.2019.04.013
Babayan SA, Allen JE, Taylor DW (2012) Future prospects and challenges of vaccines against filariasis. Parasite Immunol 34:243–253. https://doi.org/10.1111/j.1365-3024.2011.01350.x
doi: 10.1111/j.1365-3024.2011.01350.x
pubmed: 22150082
Morris CP, Evans H, Larsen SE, Mitre E (2013) A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 26:381–421. https://doi.org/10.1128/CMR.00002-13
doi: 10.1128/CMR.00002-13
pubmed: 23824365
pmcid: 3719488
Kalyanasundaram R, Khatri V, Chauhan N (2020) Advances in Vaccine Development for Human Lymphatic Filariasis. Trends Parasitol 36:195–205. https://doi.org/10.1016/j.pt.2019.11.005
doi: 10.1016/j.pt.2019.11.005
pubmed: 31864894
Dixit S, Gaur RL, Sahoo MK, Joseph SK, Murthy PS, Murthy PK (2006) Protection against L
doi: 10.1016/j.vaccine.2006.05.003
pubmed: 16757067
Sahoo MK, Sisodia BS, Dixit S, Joseph SK, Gaur RL, Verma SK, Verma AK, Shasany AK, Dowle AA, Murthy PK (2009) Immunization with inflammatory proteome of Brugia malayi adult worm induces a Th1/Th2-immune response and confers protection against the filarial infection. Vaccine 27:4263–4271. https://doi.org/10.1016/j.vaccine.2009.05.015
doi: 10.1016/j.vaccine.2009.05.015
pubmed: 19450648
Verma SK, Joseph SK, Verma R, Kushwaha V, Parmar N, Yadav PK, Thota JR, Kar S, Murthy PK (2015) Protection against filarial infection by 45–49 kDa molecules of Brugia malayi via IFN-γ-mediated iNOS induction. Vaccine 33:527–534. https://doi.org/10.1016/j.vaccine.2014.11.041
doi: 10.1016/j.vaccine.2014.11.041
pubmed: 25454090
Yadav S, Gupta S, Saeed M, Mustafa H, Saxena JK, Murthy PK (2022) Immunoreactivity of Brugia malayi calreticulin and its domains with sera of different categories of bancroftian filarial patients. Acta Parasitol 67:784–793. https://doi.org/10.1007/s11686-021-00504-2
doi: 10.1007/s11686-021-00504-2
pubmed: 35083711
Kushwaha V, Kumar V, Verma SK, Sharma R, Siddiqi MI, Murthy PK (2014) Disorganized muscle protein-1 (DIM-1) of filarial parasite Brugia malayi: cDNA cloning, expression, purification, structural modeling and its potential as vaccine candidate for human filarial infection. Vaccine 32:1693–1699. https://doi.org/10.1016/j.vaccine.2014.01.064
doi: 10.1016/j.vaccine.2014.01.064
pubmed: 24513011
Verma SK, Arora A, Murthy PK (2017) Recombinant Calponin of human filariid Brugia malayi: Secondary structure and immunoprophylactic potential. Vaccine 35:5201–5208. https://doi.org/10.1016/j.vaccine.2017.07.105
doi: 10.1016/j.vaccine.2017.07.105
pubmed: 28789852
Kushwaha V, Tewari P, Mandal P, Tripathi A, Murthy PK (2019) Troponin 1 of human filarial parasite Brugia malayi: cDNA cloning, expression, purification, and its immunoprophylactic potential. Parasitol Res 118:1849–1863. https://doi.org/10.1007/s00436-019-06316-8
doi: 10.1007/s00436-019-06316-8
pubmed: 31055672
Gregory WF, Atmadja AK, Allen JE, Maizels RM (2000) The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 68:4174–4179. https://doi.org/10.1128/IAI.68.7.4174-4179.2000
doi: 10.1128/IAI.68.7.4174-4179.2000
pubmed: 10858234
pmcid: 101719
Anand SB, Murugan V, Prabhu PR, Anandharaman V, Reddy MV, Kaliraj P (2008) Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Trop 107:106–112. https://doi.org/10.1016/j.actatropica.2008.04.018
doi: 10.1016/j.actatropica.2008.04.018
pubmed: 18547532
Anand SB, Kodumudi KN, Reddy MV, Kaliraj P (2011) A combination of two Brugia malayi filarial vaccine candidate antigens (BmALT-2 and BmVAH) enhances immune responses and protection in jirds. J Helminthol 85:442–452. https://doi.org/10.1017/S0022149X10000799
doi: 10.1017/S0022149X10000799
pubmed: 21208482
Veerapathran A, Dakshinamoorthy G, Gnanasekar M, Reddy MV, Kalyanasundaram R (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 3:e457. https://doi.org/10.1371/journal.pntd.0000457
doi: 10.1371/journal.pntd.0000457
pubmed: 19513102
pmcid: 2685978
Dakshinamoorthy G, Samykutty AK, Munirathinam G, Shinde GB, Nutman T, Reddy MV, Kalyanasundaram R (2012) Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic filariasis. PLoS ONE 7:e34077. https://doi.org/10.1371/journal.pone.0034077
doi: 10.1371/journal.pone.0034077
pubmed: 22496777
pmcid: 3320633
Dakshinamoorthy G, Munirathinam G, Stoicescu K, Reddy MV, Kalyanasundaram R (2013) Large extracellular loop of tetraspanin as a potential vaccine candidate for filariasis. PLoS ONE 8:e77394. https://doi.org/10.1371/journal.pone.0077394
doi: 10.1371/journal.pone.0077394
pubmed: 24146990
pmcid: 3795629
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
doi: 10.1006/abio.1976.9999
pubmed: 942051
Joseph SK, Verma SK, Sahoo MK, Dixit S, Verma AK, Kushwaha V, Saxena K, Sharma A, Saxena JK, Murthy PK (2011) Sensitization with anti-inflammatory BmAFI of Brugia malayi allows L
doi: 10.1016/j.actatropica.2011.08.005
pubmed: 21875568
Murthy PK, Dennis VA, Lasater BL, Philipp MT (2000) Interleukin-10 modulates proinflammatory cytokines in the human monocytic cell line THP-1 stimulated with Borrelia burgdorferi lipoproteins. Infect Immun 68:6663–6669. https://doi.org/10.1128/IAI.68.12.6663-6669.2000
doi: 10.1128/IAI.68.12.6663-6669.2000
pubmed: 11083779
pmcid: 97764
Sahoo PK, Panda SK, Satapathy AK, Pati S (2018) Anti-filarial immunity blocks parasite development and plays a protective role. PLoS ONE 13:e0199090. https://doi.org/10.1371/journal.pone.0199090
doi: 10.1371/journal.pone.0199090
pubmed: 29927974
pmcid: 6013016
Coffman RL, Seymour BW, Lebman DA et al (1988) The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev 102:5–28. https://doi.org/10.1111/j.1600-065x.1988.tb00739.x
doi: 10.1111/j.1600-065x.1988.tb00739.x
pubmed: 2966762
Li BW, Rush A, Zhang SR, Curtis KC, Weil GJ (2004) Antibody responses to Brugia malayi antigens induced by DNA vaccination. Filaria J 3:1. https://doi.org/10.1186/1475-2883-3-1
doi: 10.1186/1475-2883-3-1
pubmed: 14738569
pmcid: 343290
Rajan TV, Porte P, Yates JA, Keefer L, Shultz LD (1996) Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun 64:3351–3353. https://doi.org/10.1128/iai.64.8.3351-3353.1996
doi: 10.1128/iai.64.8.3351-3353.1996
pubmed: 8757874
pmcid: 174228
Taylor MJ, Cross HF, Mohammed AA, Trees AJ, Bianco AE (1996) Susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to nitric oxide and hydrogen peroxide in cell-free culture and from IFN gamma-activated macrophages. Parasitology 112:315–322. https://doi.org/10.1017/s0031182000065835
doi: 10.1017/s0031182000065835
pubmed: 8728995
Mukhopadhyay S, Srivastava VM, Murthy PK, Hasnain SE (2004) Poorer NF-kappa B signaling by microfilariae in macrophages from BALB/c mice affects their ability to produce cytotoxic levels of nitric oxide to kill microfilariae. FEBS Lett 567:275–280. https://doi.org/10.1016/j.febslet.2004.04.081
doi: 10.1016/j.febslet.2004.04.081
pubmed: 15178336
Brunet LR (2001) Nitric oxide in parasitic infections. Int Immunopharmacol 1:1457–1467. https://doi.org/10.1016/s1567-5769(01)00090-x
doi: 10.1016/s1567-5769(01)00090-x
pubmed: 11515811
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
doi: 10.4049/jimmunol.164.12.6166
pubmed: 10843666
James SL (1995) Role of nitric oxide in parasitic infections. Microbiol Rev 59:533–547. https://doi.org/10.1128/mr.59.4.533-547.1995
doi: 10.1128/mr.59.4.533-547.1995
pubmed: 8531884
pmcid: 239385
Specht S, Hoerauf A (2012) Nematoda: Filarial Nematodes. In: Lamb TJ (ed) Immunity to Parasitic Infection. John Wiley & Sons, pp 217–230
doi: 10.1002/9781118393321.ch11