Interaction of contour geometry and optic flow in determining relative depth of surfaces.

Depth Figure/ground Optic flow Perceptual organization Structure-from-motion

Journal

Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384

Informations de publication

Date de publication:
07 Nov 2023
Historique:
accepted: 03 10 2023
medline: 8 11 2023
pubmed: 8 11 2023
entrez: 7 11 2023
Statut: aheadofprint

Résumé

Dynamic occlusion, such as the accretion and deletion of texture near a boundary, is a major factor in determining relative depth of surfaces. However, the shape of the contour bounding the dynamic texture can significantly influence what kind of 3D shape, and what relative depth, are conveyed by the optic flow. This can lead to percepts that are inconsistent with traditional accounts of shape and depth from motion, where accreting/deleting texture can indicate the figural region, and/or 3D rotation can be perceived despite the constant speed of the optic flow. This suggests that the speed profile of the dynamic texture and the shape of its bounding contours combine to determine relative depth in a way that is not explained by existing models. Here, we investigated how traditional structure-from-motion principles and contour geometry interact to determine the relative-depth interpretation of dynamic textures. We manipulated the consistency of the dynamic texture with rotational or translational motion by varying the speed profile of the texture. In Experiment 1, we used a multi-region figure-ground display consisting of regions with dots moving horizontally in opposite directions in adjacent regions. In Experiment 2, we used stimuli including two regions separated by a common border, with dot textures moving horizontally in opposite directions. Both contour geometry (convexity) and the speed profile of the dynamic dot texture influenced relative-depth judgments, but contour geometry was the stronger factor. The results underscore the importance of contour geometry, which most current models disregard, in determining depth from motion.

Identifiants

pubmed: 37935897
doi: 10.3758/s13414-023-02807-0
pii: 10.3758/s13414-023-02807-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : EY021494
Pays : United States

Informations de copyright

© 2023. The Psychonomic Society, Inc.

Références

Barnes, T., & Mingolla, E. (2013). A neural model of visual figure and ground in dynamically deforming shapes. Neural Networks, 37, 141–164.
doi: 10.1016/j.neunet.2012.09.011 pubmed: 23098751
Beck, C., Ognibeni, T., & Neumann, H. (2008). Object segmentation from motion discontinuities and temporal occlusion - a biologically inspired model. PLoS ONE, 3, e3807.
doi: 10.1371/journal.pone.0003807 pubmed: 19043613 pmcid: 2586919
Berzhanskaya, J., Grossberg, S., & Mingolla, E. (2007). Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. Spatial Vision, 20, 337–395.
doi: 10.1163/156856807780919000 pubmed: 17594799
Brainard, D. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
doi: 10.1163/156856897X00357 pubmed: 9176952
Braunstein, M. L., Andersen, G. J., & Riefer, D. M. (1982). The use of occlusion to resolve ambiguity in parallel projections. Perception & Psychophysics, 31, 261–267.
doi: 10.3758/BF03202532
Burge, J., Peterson, M. A., & Palmer, S. E. (2005). Ordinal configural cues combine with metric disparity in depth perception. Journal of Vision, 5, 534–542.
doi: 10.1167/5.6.5 pubmed: 16097866
Choi, R., Feldman, J., & Singh, M. (2023). A prior for convexity can override the rigidity assumption in structure-from-motion. Journal of Vision, XX, XXX.
Erlikhman, G., Gurariy, G., Mruczek, R. E. B., & Caplovitz, G. P. (2016). The neural representation of objects formed through the spatiotemporal integration of visual transients. NeuroImage, 142, 67–78. https://doi.org/10.1016/j.neuroimage.2016.03.044
doi: 10.1016/j.neuroimage.2016.03.044 pubmed: 27033688
Froyen, V., Feldman, J., & Singh, M. (2010). A Bayesian framework for figure-ground interpretation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 23 (pp. 631–639). Vancouver, British Columbia, Canada: Curran Associates volume.
Froyen, V., Feldman, J., & Singh, M. (2013). Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground. Journal of Vision, 13, 1–12.
doi: 10.1167/13.10.6
Froyen, V., Tanrikulu, Ö. D., Singh, M., & Feldman, J. (2012). Stereoslant: A novel method for measuring figure-ground. Journal of Vision, 12, 1295. https://doi.org/10.1167/12.9.1295
doi: 10.1167/12.9.1295
Gibson, J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.
Gibson, J., Kaplan, G., Reynolds, H., & Wheeler, K. (1969). The change from visible to invisible: A study of optical transitions. Perception & Psychophysics, 5, 113–116.
doi: 10.3758/BF03210533
Granrud, C. E., Yonas, A., Smith, I. M., Arterberry, M. E., Glicksman, M. L., & Sorknes, A. C. (1984). Infants’ sensitivity to accretion and deletion of texture as information for depth at an edge. Child Development, 55, 1630–6.
doi: 10.2307/1130032 pubmed: 6488967
He, X. (2016). Structure from motion without projective consistency. Master’s thesis Rutgers, The State University of New Jersey.
He, X., Feldman, J., & Singh, M. (2017). The influence of contour geometry on structure-from-motion: from symmetry to parallelism. Journal of Vision, 17, 414. https://doi.org/10.1167/17.10.414
doi: 10.1167/17.10.414
He, X., Feldman, J., & Singh, M. (2019). The strong influence of contour geometry in structure from motion (sfm). Journal of Vision, 19, 198a. https://doi.org/10.1167/19.10.198a
doi: 10.1167/19.10.198a
Hegdé, J., Albright, T., & Stoner, G. (2004). Second-order motion conveys depth-order information. Journal of Vision, 4, 838–842.
doi: 10.1167/4.10.1 pubmed: 15595889
Hildreth, E., & Royden, C. (2011). Integrating multiple cues to depth order at object boundaries. Attention, Perception, & Psychophysics, 73, 2218–2235.
doi: 10.3758/s13414-011-0172-0
Hoffman, D., & Singh, M. (1997). Salience of visual parts. Cognition, 63, 29–78.
doi: 10.1016/S0010-0277(96)00791-3 pubmed: 9187064
Howard, I., & Rogers, B. (2002). Seeing in depth (Vol. 2). Porteous, Toronto, ON: Depth Perception. I.
Johnson, S. P., & Mason, U. (2002). Perception of kinetic illusory contours by two-month infants. Child Development, 73, 22–34.
doi: 10.1111/1467-8624.00389 pubmed: 14717241
Kanizsa, G., & Gerbino, W. (1976). Convexity and symmetry in figure-ground organization. In M. Henle (Ed.), Vision and artifact (pp. 25–32). New York: Springer.
Kaplan, G. (1969). Kinetic disruption of optical texture: The perception of depth at an edge. Attention, Perception, & Psychophysics, 6, 193–198.
doi: 10.3758/BF03207015
Kleiner, M., Brainard, M., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What is new in psychtoolbox 3. Perception, 36, 1–16.
Koenderink, J. J., & van Doorn, A. J. (1982). The shape of smooth objects and the way contours end. Perception, 11, 129–137. https://doi.org/10.1068/p110129
doi: 10.1068/p110129 pubmed: 7155766
Layton, O., Mingolla, E., & Yazdanbakhsh, A. (2012). Dynamic coding of border-ownership in visual cortex. Journal of Vision, 12, 8. https://doi.org/10.1167/12.13.8
doi: 10.1167/12.13.8 pubmed: 23220579
Layton, O., Mingolla, E., & Yazdanbakhsh, A. (2014). Neural dynamics of feedforward and feedback processing in figure-ground segregation. Frontiers in Psychology, 5,. https://doi.org/10.3389/fpsyg.2014.00972
Layton, O., & Yazdanbakhsh, A. (2015). A neural model of border-ownership from kinetic occlusion. Vision Research, 106, 64–80.
doi: 10.1016/j.visres.2014.11.002 pubmed: 25448117
Liu, Z., Jacobs, D., & Basri, R. (1989). The role of convexity in perceptual completion: beyond good continuation. Vision Research, 39, 4244–4257.
McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 104–142). New York: Academic Press.
Metzger, F. (1936/2006). Laws of Seeing. (L. Spillmann and S. Lehar and M Stromeyer and M. Wertheimer, Trans.): Massachusetts Institute of Technology, Cambridge, MA (Original work published 1936).
Morinaga, S. (1941). Beobachtungen über grundlagen und wirkungen anschaulich gleichmäßiger breite. Archiv für die gesamte Psychologie, 110, 309–348.
Mutch, K., & Thompson, W. (1985). Analysis of accretion and deletion at boundaries in dynamic scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2, 133–138.
doi: 10.1109/TPAMI.1985.4767638
Niyogi, S. (1995). Detecting kinetic occlusion. Cambridge, MA: Massachusetts Institute of Technology.
doi: 10.1109/ICCV.1995.466819
Norman, J. F., Todd, J. T., & Orban, G. A. (2012). Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information. Psychological Science, 15, 565–570. https://doi.org/10.1111/j.0956-7976.2004.00720.x
doi: 10.1111/j.0956-7976.2004.00720.x
Ono, H., Rogers, B., Ohmi, M., & Ono, M. (1988). Dynamic occlusion and motion parallax in depth perception. Perception, 17, 255–266.
doi: 10.1068/p170255 pubmed: 3226867
Peterson, M. A., & Salvagio, E. (2008). Inhibitory competition in figure-ground perception: Context and convexity. Journal of Vision, 8, 4. https://doi.org/10.1167/8.16.4
doi: 10.1167/8.16.4
Profitt, D. R., Bertenthal, B. I., & Roberts, R. J. (1984). The role of occlusion in reducing multistability in moving point-light displays. Perception & Psychophysics, 36, 315–323.
doi: 10.3758/BF03202783
Ramachandran, V. S., Cobb, S., & Rogers-Ramachandran, D. (1988). Perception of 3-d structure from motion: The role of velocity gradients and segmentation boundaries. Attention, Perception, & Psychophysics, 44, 390–393.
doi: 10.3758/BF03210423
Raudies, F., & Neumann, H. (2010). A neural model of the temporal dynamics of figure-ground segregation in motion perception. Neural Networks, 23, 160–176.
doi: 10.1016/j.neunet.2009.10.005 pubmed: 19931405
Royden, C. S., Baker, J. F., & Allman, J. (1988). Perception of depth elicited by occluded and shearing motions of random dots. Perception, 17, 289–296.
doi: 10.1068/p170289 pubmed: 3226870
Rubin, E. (1915/1958). Figure and ground. In D. Beardslee, & M. Wertheimer (Eds.), Readings in perception (pp. 194–203). Princeton, NJ: Van Nostrand (Original work published 1915).
Ruda, H., Livitz, G., Riesen, G., & Mingolla, E. (2015). Computational modeling of depth ordering in occlusion through accretion or deletion of texture. Journal of Vision, 15, 20.
doi: 10.1167/15.9.20 pubmed: 26230982
Sperling, G., Landy, M., Dosher, B., & Perkins, M. (1989). Kinetic depth effect and identification of shape. Journal of Experimental Psychology: Human Perception and Performance, 15, 826–840.
Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2016). Geometric figure-ground cues override standard depth from accretion-deletion. Journal of Vision, 16, 1–15.
doi: 10.1167/16.5.15
Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2018). When is accreting/deleting texture seen as in front? interpretation of depth from texture motion when is accreting/deleting texture seen as in front? interpretation of depth from texture motion. Perception, 0, 1–28.
Tanrikulu, O. D., Froyen, V., Feldman, J., & Singh, M. (2022). The interpretation of dynamic occlusion: Combining contour geometry and accretion/deletion of texture. Vision Research, .
Thompson, W., Kersten, D., & Knecht, W. R. (1992). Structure-from-motion based on information at surface boundaries. Biological Cybernetics, 66, 327–333.
doi: 10.1007/BF00203669
Thompson, W., Mutch, K., & Berzins, V. (1985). Dynamical occlusion analysis in optical flow fields. Pattern Analysis and Machine Intelligence, IEEE Transactions, 4, 374–383.
doi: 10.1109/TPAMI.1985.4767677
Todd, J. T. (2004). The visual perception of 3d shape. Trends in Cognitive Sciences, 8, 115–121. https://doi.org/10.1016/j.tics.2004.01.006
doi: 10.1016/j.tics.2004.01.006 pubmed: 15301751
Ullman, S. (1979). The interpretation of structure from motion. In Proceedings of the Royal Society of London (pp. 405–426). The Royal Society volume 203 of Series B, Biological Sciences.
Vecera, S. P., Vogel, E. K., & Woodman, G. F. (2002). Lower region: a new cue for figure-ground assignment. Journal of Experimental Psychology: General, 131, 194–205.
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of gestalt psychology in visual perception: 1. perceptual grouping and figure-ground organization. Psychological Bulletin, 138, 1172–217.
Yoonessi, A., & Baker, C. L., Jr. (2013). Depth perception from dynamic occlusion in motion parallax: Roles of expansion-compression versus accretion-deletion. Journal of Vision, 13, 10. https://doi.org/10.1167/13.12.10
doi: 10.1167/13.12.10 pubmed: 24130259 pmcid: 4521857
Zhou, H., Friedman, H., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611. https://doi.org/10.1523/JNEUROSCI.20-17-06594.2000
doi: 10.1523/JNEUROSCI.20-17-06594.2000 pubmed: 10964965

Auteurs

Ö Dağlar Tanrıkulu (ÖD)

Department of Psychology, University of New Hampshire, Durham, USA. ot1031@unh.edu.

Vicky Froyen (V)

Department of Psychology, Center for Cognitive Science, Rutgers University, Piscataway, USA.

Jacob Feldman (J)

Department of Psychology, Center for Cognitive Science, Rutgers University, Piscataway, USA.

Manish Singh (M)

Department of Psychology, Center for Cognitive Science, Rutgers University, Piscataway, USA.

Classifications MeSH