Non-invasive left ventricular pressure-strain loop study on cardiac fibrosis in primary aldosteronism: a comparative study with cardiac magnetic resonance imaging.

Cardiac fibrosis Late gadolinium enhancement Left ventricular pressure-strain loop Primary aldosteronism

Journal

Hypertension research : official journal of the Japanese Society of Hypertension
ISSN: 1348-4214
Titre abrégé: Hypertens Res
Pays: England
ID NLM: 9307690

Informations de publication

Date de publication:
07 Nov 2023
Historique:
received: 13 05 2023
accepted: 06 10 2023
revised: 19 09 2023
medline: 8 11 2023
pubmed: 8 11 2023
entrez: 7 11 2023
Statut: aheadofprint

Résumé

We investigated the potential diagnostic value of the myocardial work indices based on speckle tracking echocardiography for cardiac fibrosis in patients with primary aldosteronism. Our observational study included 48 patients with primary aldosteronism. We performed conventional echocardiography and the left ventricular pressure-strain loop analysis. We also performed cardiac magnetic resonance imaging to evaluate cardiac replacement fibrosis defined as late gadolinium enhancement (LGE). Patients with LGE (n = 30, 62.5%) had longer duration of hypertension and higher plasma NT-proBNP than those without LGE. Besides, they had a significantly (P ≤ 0.04) higher left ventricular mass index (121.3 ± 19.5 vs. 103.3 ± 20.0 g/m

Identifiants

pubmed: 37935905
doi: 10.1038/s41440-023-01482-w
pii: 10.1038/s41440-023-01482-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to The Japanese Society of Hypertension.

Références

Käyser SC, Dekkers T, Groenewoud HJ, van der Wilt GJ, Carel Bakx J, van der Wel MC, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101:2826–35.
doi: 10.1210/jc.2016-1472 pubmed: 27172433
Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–20.
doi: 10.1016/j.jacc.2017.01.052 pubmed: 28385310
Brilla CG, Weber KT. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res. 1992;26:671–7.
doi: 10.1093/cvr/26.7.671 pubmed: 1423431
Sun Y, Ramires FJ, Weber KT. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res. 1997;35:138–47.
doi: 10.1016/S0008-6363(97)00097-7 pubmed: 9302358
Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50.
doi: 10.1016/S2213-8587(17)30319-4 pubmed: 29129575
Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.
doi: 10.1016/j.jacc.2010.11.013 pubmed: 21329834
Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.
doi: 10.1161/CIRCULATIONAHA.105.570648 pubmed: 16754804
Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.
doi: 10.1161/CIRCULATIONAHA.107.727826 pubmed: 18725488 pmcid: 2743310
Freel EM, Mark PB, Weir RA, McQuarrie EP, Allan K, Dargie HJ, et al. Demonstration of blood pressure-independent noninfarct myocardial fibrosis in primary aldosteronism: a cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging. 2012;5:740–7.
doi: 10.1161/CIRCIMAGING.112.974576 pubmed: 23019275
Su MY, Wu VC, Yu HY, Lin YH, Kuo CC, Liu KL, et al. Contrast-enhanced MRI index of diffuse myocardial fibrosis is increased in primary aldosteronism. J Magn Reson Imaging. 2012;35:1349–55.
doi: 10.1002/jmri.23592 pubmed: 22282406
Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33:724–33.
doi: 10.1093/eurheartj/ehs016 pubmed: 22315346 pmcid: 3303715
van der Bijl P, Kostyukevich M, El Mahdiui M, Hansen G, Samset E, Ajmone Marsan N, et al. A roadmap to assess myocardial work: from theory to clinical practice. JACC Cardiovasc Imaging 2019;12:2549–54.
doi: 10.1016/j.jcmg.2019.05.028 pubmed: 31326486
Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.
doi: 10.1210/jc.2015-4061 pubmed: 26934393
Chen SX, Du YL, Zhang J, Gong YC, Hu YR, Chu SL, et al. Aldosterone-to-renin ratio threshold for screening primary aldosteronism in Chinese hypertensive patients. Zhonghua Xin Xue Guan Bing Za Zhi. 2006;34:868–72.
pubmed: 17217708
Mulatero P, Monticone S, Deinum J, Amar L, Prejbisz A, Zennaro MC, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: A position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens. 2020;38:1919–28.
doi: 10.1097/HJH.0000000000002510 pubmed: 32890264
Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.
doi: 10.1016/S0735-1097(97)00344-6 pubmed: 9362412
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.
doi: 10.1016/j.echo.2014.10.003 pubmed: 25559473
Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Gjesdal O, et al. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol Heart Circ Physiol. 2013;305:H996–1003.
doi: 10.1152/ajpheart.00191.2013 pubmed: 23893165
Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.
doi: 10.1161/hc0402.102975 pubmed: 11815441
Yang T, Lu M, Ouyang W, Li B, Yang Y, Zhao S, et al. Prognostic value of myocardial scar by magnetic resonance imaging in patients undergoing coronary artery bypass graft. Int J Cardiol. 2021;326:49–54.
doi: 10.1016/j.ijcard.2020.10.052 pubmed: 33296720
Cauwenberghs N, Tabassian M, Thijs L, Yang WY, Wei FF, Claus P, et al. Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. Cardiovasc Ultrasound. 2019;17:15.
doi: 10.1186/s12947-019-0166-y pubmed: 31382957 pmcid: 6683340
Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2019;20:582–90.
doi: 10.1093/ehjci/jey188 pubmed: 30590562
Galli E, Leclercq C, Fournet M, Hubert A, Bernard A, Smiseth OA, et al. Value of myocardial work estimation in the prediction of response to cardiac resynchronization therapy. J Am Soc Echocardiogr. 2018;31:220–30.
doi: 10.1016/j.echo.2017.10.009 pubmed: 29246513
Chen YL, Xu TY, Xu JZ, Zhu LM, Li Y, Wang JG. A non-invasive left ventricular pressure-strain loop study on myocardial work in primary aldosteronism. Hypertens Res. 2021;44:1462–70.
doi: 10.1038/s41440-021-00725-y pubmed: 34417559
Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12:18–29.
doi: 10.1038/nrcardio.2014.159 pubmed: 25348690
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549–74.
doi: 10.1007/s00018-013-1349-6 pubmed: 23649149
Sahiti F, Morbach C, Cejka V, Tiffe T, Wagner M, Eichner FA, et al. Impact of cardiovascular risk factors on myocardial work-insights from the STAAB cohort study. J Hum Hypertens. 2022;36:235–45.
doi: 10.1038/s41371-021-00509-4 pubmed: 33654241
Sahiti F, Morbach C, Cejka V, Albert J, Eichner FA, Gelbrich G, et al. Left ventricular remodeling and myocardial work: results from the population-based STAAB cohort study. Front Cardiovasc Med. 2021;8:669335.
doi: 10.3389/fcvm.2021.669335 pubmed: 34179134 pmcid: 8232934
Cimino S, Canali E, Petronilli V, Cicogna F, De Luca L, Francone M, et al. Global and regional longitudinal strain assessed by two-dimensional speckle tracking echocardiography identifies early myocardial dysfunction and transmural extent of myocardial scar in patients with acute ST elevation myocardial infarction and relatively preserved LV function. Eur Heart J Cardiovasc Imaging. 2013;14:805–11.
doi: 10.1093/ehjci/jes295 pubmed: 23258316
Zhao H, Lee AP, Li Z, Qiao Z, Fan Y, An D, et al. Impact of intramyocardial hemorrhage and microvascular obstruction on cardiac mechanics in reperfusion injury: a speckle-tracking echocardiographic study. J Am Soc Echocardiogr. 2016;29:973–82.
doi: 10.1016/j.echo.2016.06.011 pubmed: 27523265
Kwon BJ, Choi KY, Kim DB, Jang SW, Cho EJ, Youn HJ, et al. Systolic synchrony is impaired in nonleft ventricular hypertrophy of never-treated hypertensive patients. J Hypertens. 2011;29:2246–54.
doi: 10.1097/HJH.0b013e32834b7f67 pubmed: 21918472
Santos AB, Kraigher-Krainer E, Bello N, Claggett B, Zile MR, Pieske B, et al. Left ventricular dyssynchrony in patients with heart failure and preserved ejection fraction. Eur Heart J. 2014;35:42–7.
doi: 10.1093/eurheartj/eht427 pubmed: 24164863
Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17:613–21.
doi: 10.1093/ehjci/jew005 pubmed: 26873460 pmcid: 4871235
Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2:437–43.
doi: 10.1161/CIRCIMAGING.108.838367 pubmed: 19920041 pmcid: 2782553
Manganaro R, Marchetta S, Dulgheru R, Sugimoto T, Tsugu T, Ilardi F, et al. Correlation between non-invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2020;21:533–41.
doi: 10.1093/ehjci/jez203 pubmed: 31408147
Kawasaki T, Sakai C, Harimoto K, Yamano M, Miki S, Kamitani T. Usefulness of high-sensitivity cardiac troponin T and brain natriuretic peptide as biomarkers of myocardial fibrosis in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2013;112:867–72.
doi: 10.1016/j.amjcard.2013.04.060 pubmed: 23746480
Liu CY, Heckbert SR, Lai S, Ambale-Venkatesh B, Ostovaneh MR, McClelland RL, et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2017;70:3102–9.
doi: 10.1016/j.jacc.2017.10.044 pubmed: 29268924 pmcid: 6561089
Ambale Venkatesh B, Volpe GJ, Donekal S, Mewton N, Liu CY, Shea S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi-Ethnic Study of Atherosclerosis study. Hypertension. 2014;64:508–15.
doi: 10.1161/HYPERTENSIONAHA.114.03697 pubmed: 24914198

Auteurs

Yi-Lin Chen (YL)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Chi-Hua Chen (CH)

Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Ting-Yan Xu (TY)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. xtyswallow@sina.com.

Jian-Zhong Xu (JZ)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Li-Min Zhu (LM)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Yan Li (Y)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Ji-Guang Wang (JG)

Department of Cardiovascular Medicine, National Research Center for Translational Medicine, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Classifications MeSH