Arterial Spin Labeling-Based MR Angiography for Cerebrovascular Diseases: Principles and Clinical Applications.

MR angiography arterial spin labeling cerebrovascular disease

Journal

Journal of magnetic resonance imaging : JMRI
ISSN: 1522-2586
Titre abrégé: J Magn Reson Imaging
Pays: United States
ID NLM: 9105850

Informations de publication

Date de publication:
08 Nov 2023
Historique:
revised: 23 10 2023
received: 17 07 2023
accepted: 23 10 2023
medline: 8 11 2023
pubmed: 8 11 2023
entrez: 8 11 2023
Statut: aheadofprint

Résumé

Arterial spin labeling (ASL) is a noninvasive imaging technique that labels the proton spins in arterial blood and uses them as endogenous tracers. Brain perfusion imaging with ASL is becoming increasingly common in clinical practice, and clinical applications of ASL for intracranial magnetic resonance angiography (MRA) have also been demonstrated. Unlike computed tomography (CT) angiography and cerebral angiography, ASL-based MRA does not require contrast agents. ASL-based MRA overcomes most of the disadvantages of time-of-flight (TOF) MRA. Several schemes have been developed for ASL-based MRA; the most common method has been pulsed ASL, but more recently pseudo-continuous ASL, which provides a higher signal-to-noise ratio (SNR), has been used more frequently. New methods that have been developed include direct intracranial labeling methods such as velocity-selective ASL and acceleration-selective ASL. MRA using an extremely short echo time (eg, silent MRA) or ultrashort echo-time (TE) MRA can suppress metal susceptibility artifacts and is ideal for patients with a metallic device implanted in a cerebral vessel. Vessel-selective 4D ASL MRA can provide digital subtraction angiography (DSA)-like images. This review highlights the principles, clinical applications, and characteristics of various ASL-based MRA techniques. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

Identifiants

pubmed: 37937684
doi: 10.1002/jmri.29119
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Society for the Promotion of Science KAKENHI
ID : JP20K08111
Organisme : Japan Society for the Promotion of Science KAKENHI
ID : JP23K07137
Organisme : Philips Japan

Informations de copyright

© 2023 International Society for Magnetic Resonance in Medicine.

Références

Leffers AM, Wagner A. Neurologic complications of cerebral angiography. A retrospective study of complication rate and patient risk factors. Acta Radiol 2000;41(3):204-210.
Keller PJ, Drayer BP, Fram EK, Williams KD, Dumoulin CL, Souza SP. MR angiography with two-dimensional acquisition and three-dimensional display. Work in progress. Radiology 1989;173(2):527-532.
Laub GA. Time-of-flight method of MR angiography. Magn Reson Imaging Clin N Am 1995;3(3):391-398.
Uchino H, Ito M, Fujima N, et al. A novel application of four-dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease. Clin Neurol Neurosurg 2015;137:105-111.
Iryo Y, Hirai T, Kai Y, et al. Intracranial dural arteriovenous fistulas: Evaluation with 3-T four-dimensional MR angiography using arterial spin labeling. Radiology 2014;271(1):193-199.
Iryo Y, Hirai T, Nakamura M, et al. Collateral circulation via the circle of Willis in patients with carotid artery steno-occlusive disease: Evaluation on 3-T 4D MRA using arterial spin labelling. Clin Radiol 2015;70(9):960-965.
Iryo Y, Hirai T, Nakamura M, et al. Evaluation of intracranial arteriovenous malformations with four-dimensional arterial-spin labeling-based 3-T magnetic resonance angiography. J Comput Assist Tomogr 2016;40(2):290-296.
Togao O, Hiwatashi A, Obara M, et al. Acceleration-selective arterial spin-labeling MR angiography used to visualize distal cerebral arteries and collateral vessels in Moyamoya disease. Radiology 2018;286(2):611-621.
Togao O, Hiwatashi A, Obara M, et al. 4D ASL-based MR angiography for visualization of distal arteries and leptomeningeal collateral vessels in Moyamoya disease: A comparison of techniques. Eur Radiol 2018;28(11):4871-4881.
Togao O, Hiwatashi A, Yamashita K, et al. Acceleration-selective arterial spin labeling MR angiography for visualization of brain arteriovenous malformations. Neuroradiology 2019;61(9):979-989.
Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P. Signal targeting with alternating radiofrequency (STAR) sequences: Application to MR angiography. Magn Reson Med 1994;31(2):233-238.
Okell TW. Combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2019;81(1):182-194.
Wu H, Block WF, Turski PA, et al. Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 2014;39(5):1320-1326.
Obara M, Togao O, Beck GM, et al. Non-contrast enhanced 4D intracranial MR angiography based on pseudo-continuous arterial spin labeling with the keyhole and view-sharing technique. Magn Reson Med 2018;80(2):719-725.
Obara M, Togao O, Yoneyama M, et al. Acceleration-selective arterial spin labeling for intracranial MR angiography with improved visualization of cortical arteries and suppression of cortical veins. Magn Reson Med 2017;77(5):1996-2004.
Fujiwara Y, Muranaka Y. Improvement in visualization of carotid artery uniformity using silent magnetic resonance angiography. Radiol Phys Technol 2017;10(1):113-120.
Alibek S, Vogel M, Sun W, et al. Acoustic noise reduction in MRI using silent scan: An initial experience. Diagn Interv Radiol 2014;20(4):360-363.
Ayabe Y, Hamamoto K, Yoshino Y, et al. Ultra-short Echo-time MR angiography combined with a subtraction method to assess intracranial aneurysms treated with a flow-diverter device. Magn Reson Med Sci 2023;22(1):117-125.
Obara M, Togao O, Helle M, et al. Improved selective visualization of internal and external carotid artery in 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK). Magn Reson Imaging 2020;73:15-22.
Wong EC, Buxton RB, Frank LR. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 1998;40(3):348-355.
Suzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR angiography using arterial spin labeling: Technical considerations. Magn Reson Med Sci 2020;19(4):294-309.
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015;73(1):102-116.
Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60(6):1488-1497.
Bi X, Weale P, Schmitt P, Zuehlsdorff S, Jerecic R. Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: A feasibility study. Magn Reson Med 2010;63(3):835-841.
Xu J, Shi D, Chen C, et al. Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: A preliminary trial. J Magn Reson Imaging 2011;34(5):1199-1205.
Yu S, Yan L, Yao Y, et al. Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA). Magn Reson Imaging 2012;30(6):869-877.
Raoult H, Bannier E, Robert B, Barillot C, Schmitt P, Gauvrit JY. Time-resolved spin-labeled MR angiography for the depiction of cerebral arteriovenous malformations: A comparison of techniques. Radiology 2014;271(2):524-533.
Yan L, Wang S, Zhuo Y, et al. Unenhanced dynamic MR angiography: High spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology 2010;256(1):270-279.
Nakamura M, Yoneyama M, Tabuchi T, Takemura A, Obara M, Sawano S. Non-contrast time-resolved magnetic resonance angiography combining high resolution multiple phase echo planar imaging based signal targeting and alternating radiofrequency contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency in intracranial arteries. Nihon Hoshasen Gijutsu Gakkai Zasshi 2012;68(11):1525-1532.
Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: Inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46(5):974-984.
Lanzman RS, Kropil P, Schmitt P, et al. Nonenhanced ECG-gated time-resolved 4D steady-state free precession (SSFP) MR angiography (MRA) for assessment of cerebral collateral flow: Comparison with digital subtraction angiography (DSA). Eur Radiol 2011;21(6):1329-1338.
Jang J, Schmitt P, Kim BY, et al. Non-contrast-enhanced 4D MR angiography with STAR spin labeling and variable flip angle sampling: A feasibility study for the assessment of dural arteriovenous fistula. Neuroradiology 2014;56(4):305-314.
Suzuki Y, Fujima N, Ogino T, et al. Acceleration of ASL-based time-resolved MR angiography by acquisition of control and labeled images in the same shot (ACTRESS). Magn Reson Med 2018;79(1):224-233.
Wu H, Block WF, Turski PA, Mistretta CA, Johnson KM. Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med 2013;69(3):708-715.
Koktzoglou I, Gupta N, Edelman RR. Nonenhanced extracranial carotid MR angiography using arterial spin labeling: Improved performance with pseudocontinuous tagging. J Magn Reson Imaging 2011;34(2):384-394.
Jones RA, Haraldseth O, Muller TB, Rinck PA, Oksendal AN. K-space substitution: A novel dynamic imaging technique. Magn Reson Med 1993;29(6):830-834.
Du J, Carroll TJ, Wagner HJ, et al. Time-resolved, undersampled projection reconstruction imaging for high-resolution CE-MRA of the distal runoff vessels. Magn Reson Med 2002;48(3):516-522.
Wang M, Ma Y, Chen F, Zhou F, Zhang J, Zhang B. Acceleration of pCASL-based cerebral 4D MR angiography using compressed SENSE: A comparison with SENSE. Front Neurol 2022;13:796271.
Lindner T, Jensen-Kondering U, van Osch MJ, Jansen O, Helle M. 3D time-resolved vessel-selective angiography based on pseudo-continuous arterial spin labeling. Magn Reson Imaging 2015;33(6):840-846.
Fujima N, Osanai T, Shimizu Y, et al. Utility of noncontrast-enhanced time-resolved four-dimensional MR angiography with a vessel-selective technique for intracranial arteriovenous malformations. J Magn Reson Imaging 2016;44(4):834-845.
Okell TW, Schmitt P, Bi X, et al. Optimization of 4D vessel-selective arterial spin labeling angiography using balanced steady-state free precession and vessel-encoding. NMR Biomed 2016;29(6):776-786.
Suzuki Y, Okell TW, Fujima N, van Osch MJP. Acceleration of vessel-selective dynamic MR angiography by pseudocontinuous arterial spin labeling in combination with Acquisition of ConTRol and labEled images in the Same Shot (ACTRESS). Magn Reson Med 2019;81(5):2995-3006.
Nakamura M, Yoneyama M, Tabuchi T, et al. Vessel-selective, non-contrast enhanced, time-resolved MR angiography with vessel-selective arterial spin labeling technique (CINEMA-SELECT) in intracranial arteries. Radiol Phys Technol 2013;6(2):327-334.
Wong EC. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007;58(6):1086-1091.
Helle M, Norris DG, Rufer S, Alfke K, Jansen O, van Osch MJ. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 2010;64(3):777-786.
Wong EC, Guo J. Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. MAGMA 2012;25(2):95-101.
Suzuki Y, van Osch MJP, Fujima N, Okell TW. Optimization of the spatial modulation function of vessel-encoded pseudo-continuous arterial spin labeling and its application to dynamic angiography. Magn Reson Med 2019;81(1):410-423.
Lindner T, Austein F, Jansen O, Helle M. Self-controlled super-selective arterial spin labelling. Eur Radiol 2018;28(3):1227-1233.
Obara M, Togao O, Helle M, et al. Investigation of intracranial artery selective visualization in superselective 4D-MR angiography with pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (SS-4D-PACK). Proc Int Soc Magn Reson Med 2018;27:185.
Togao O, Obara M, Helle M, et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur Radiol 2020;30(12):6452-6463.
Murazaki H, Wada T, Togao O, et al. Optimization of 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) for vessel-selective visualization of the internal carotid artery and vertebrobasilar artery systems. Magn Reson Imaging 2022;85:287-296.
Togao O, Obara M, Kikuchi K, et al. Vessel-selective 4D-MRA using superselective pseudocontinuous arterial spin-labeling with keyhole and view-sharing for visualizing intracranial dural AVFs. AJNR Am J Neuroradiol 2022;43(3):368-375.
van Dijk JM, terBrugge KG, Willinsky RA, Wallace MC. Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke 2002;33(5):1233-1236.
Meckel S, Maier M, Ruiz DS, et al. MR angiography of dural arteriovenous fistulas: Diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol 2007;28(5):877-884.
Akiba H, Tamakawa M, Hyodoh H, et al. Assessment of dural arteriovenous fistulas of the cavernous sinuses on 3D dynamic MR angiography. AJNR Am J Neuroradiol 2008;29(9):1652-1657.
Farb RI, Agid R, Willinsky RA, Johnstone DM, Terbrugge KG. Cranial dural arteriovenous fistula: Diagnosis and classification with time-resolved MR angiography at 3T. AJNR Am J Neuroradiol 2009;30(8):1546-1551.
Bink A, Berkefeld J, Wagner M, et al. Detection and grading of dAVF: Prospects and limitations of 3T MRI. Eur Radiol 2012;22(2):429-438.
Wang M, Yang Y, Wang Y, Li M, Zhang J, Zhang B. Vessel-selective 4D MRA based on ASL might potentially show better performance than 3D TOF MRA for treatment evaluation in patients with intra-extracranial bypass surgery: A prospective study. Eur Radiol 2021;31:7214.
Helle M, Wenzel F, van de Ven K, Boernert P. Advanced automatic planning for super-selective arterial spin labeling flow territory mapping. Proc Int Soc Magn Reson Med 2018;26:302.
Kimura T, Ikedo M, Takemoto S. Hybrid of opposite-contrast MR angiography (HOP-MRA) combining time-of-flight and flow-sensitive black-blood contrasts. Magn Reson Med 2009;62(2):450-458.
Tsuchiya K, Yoshida M, Imai M, et al. Hybrid of opposite-contrast magnetic resonance angiography of the brain by combining time-of-flight and black blood sequences: Its value in Moyamoya disease. J Comput Assist Tomogr 2010;34(2):242-246.
Tsuchiya K, Imai M, Nitatori T, Kimura T. Postoperative evaluation of superficial temporal artery-middle cerebral artery bypass using an MR angiography technique with combined white-blood and black-blood sequences. J Magn Reson Imaging 2013;38(3):671-676.
Tsuchiya K, Kobayashi K, Nitatori T, Kimura T, Ikedo M, Takemoto S. Hybrid of opposite-contrast MRA of the brain by combining time-of-flight and black-blood sequences: Initial experience in major trunk stenoocclusive diseases. J Magn Reson Imaging 2010;31(1):56-60.
Xu F, Zhu D, Fan H, et al. Magnetic resonance angiography and perfusion mapping by arterial spin labeling using Fourier transform-based velocity-selective pulse trains: Examination on a commercial perfusion phantom. Magn Reson Med 2021;86(3):1360-1368.
Guo J, Meakin JA, Jezzard P, Wong EC. An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses. Magn Reson Med 2015;73(3):1085-1094.
Li W, Xu F, Schar M, et al. Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains. Magn Reson Med 2018;79(4):2014-2023.
Qin Q, Shin T, Schar M, Guo H, Chen H, Qiao Y. Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: Improved immunity to B0/B1 inhomogeneity. Magn Reson Med 2016;75(3):1232-1241.
Priest AN, Taviani V, Graves MJ, Lomas DJ. Improved artery-vein separation with acceleration-dependent preparation for non-contrast-enhanced magnetic resonance angiography. Magn Reson Med 2014;72(3):699-706.
Schmid S, Petersen ET, Van Osch MJ. Insight into the labeling mechanism of acceleration selective arterial spin labeling. MAGMA 2017;30(2):165-174.
Yamada I, Murata Y, Umehara I, Suzuki S, Matsushima Y. SPECT and MRI evaluations of the posterior circulation in Moyamoya disease. J Nucl Med 1996;37(10):1613-1617.
Mugikura S, Takahashi S, Higano S, et al. The relationship between cerebral infarction and angiographic characteristics in childhood Moyamoya disease. AJNR Am J Neuroradiol 1999;20(2):336-343.
Togao O, Mihara F, Yoshiura T, et al. Cerebral hemodynamics in Moyamoya disease: Correlation between perfusion-weighted MR imaging and cerebral angiography. AJNR Am J Neuroradiol 2006;27(2):391-397.
Yamada I, Himeno Y, Nagaoka T, et al. Moyamoya disease: Evaluation with diffusion-weighted and perfusion echo-planar MR imaging. Radiology 1999;212(2):340-347.
Kuroda S, Houkin K. Moyamoya disease: Current concepts and future perspectives. Lancet Neurol 2008;7(11):1056-1066.
Funaki T, Takahashi JC, Yoshida K, et al. Periventricular anastomosis in Moyamoya disease: Detecting fragile collateral vessels with MR angiography. J Neurosurg 2016;124(6):1766-1772.
Irie R, Suzuki M, Yamamoto M, et al. Assessing blood flow in an intracranial stent: A feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. AJNR Am J Neuroradiol 2015;36(5):967-970.
Shang S, Ye J, Luo X, Qu J, Zhen Y, Wu J. Follow-up assessment of coiled intracranial aneurysms using zTE MRA as compared with TOF MRA: A preliminary image quality study. Eur Radiol 2017;27(10):4271-4280.

Auteurs

Osamu Togao (O)

Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Makoto Obara (M)

Philips Japan, Tokyo, Japan.

Koji Yamashita (K)

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Kazufumi Kikuchi (K)

Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Tatsuhiro Wada (T)

Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.

Hiroo Murazaki (H)

Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan.

Koichi Arimura (K)

Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Ataru Nishimura (A)

Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Nobutaka Horie (N)

Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

Kim van de Ven (K)

Philips Healthcare, Best, The Netherlands.

Marc Van Cauteren (M)

Philips Healthcare BIU MR Asia Pacific, Tokyo, Japan.

Kousei Ishigami (K)

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Classifications MeSH