Respiratory culture growth and 3-years lung health outcomes in children with bronchopulmonary dysplasia and tracheostomies.
bronchopulmonary dysplasia
pseudomonas aeruginosa
respiratory culture
tracheostomy
Journal
Pediatric pulmonology
ISSN: 1099-0496
Titre abrégé: Pediatr Pulmonol
Pays: United States
ID NLM: 8510590
Informations de publication
Date de publication:
08 Nov 2023
08 Nov 2023
Historique:
revised:
22
09
2023
received:
21
04
2023
accepted:
25
10
2023
medline:
8
11
2023
pubmed:
8
11
2023
entrez:
8
11
2023
Statut:
aheadofprint
Résumé
While bacteria identification on respiratory cultures is associated with poor short-term outcomes in children with bronchopulmonary dysplasia (BPD) and tracheostomies, the influence on longer-term respiratory support needs remains unknown. To determine if respiratory culture growth of pathogenic organisms is associated with ongoing need for respiratory support, decannulation, and death at 3 years posttracheostomy placement in children with BPD and tracheostomies. This single center, retrospective cohort study included infants and children with BPD and tracheostomies placed 2010-2018 and ≥1 respiratory culture obtained in 36 months posttracheostomy. Primary predictor was any pathogen identified on respiratory culture. Additional predictors were any Pseudomonas aeruginosa and chronic P. aeruginosa identification. Outcomes included continued use of respiratory support (e.g., oxygen, positive pressure), decannulation, and death at 3 years posttracheostomy. We used Poisson regression models to examine the relationship between respiratory organisms and outcomes, controlling for patient-level covariates and within-patient clustering. Among 170 children, 59.4% had a pathogen identified, 28.8% ever had P. aeruginosa, and 3.5% had chronic P. aeruginosa. At 3 years, 33.1% of alive children required ongoing respiratory support and 24.8% achieved decannulation; 18.9% were deceased. In adjusted analysis, any pathogen and P. aeruginosa were not associated with ongoing respiratory support or mortality. However, P. aeruginosa was associated with decreased decannulation probability (adjusted risk ratio 0.48, 95% CI 0.23-0.98). Chronic P. aeruginosa was associated with lower survival probability. Our findings suggest that respiratory pathogens including P. aeruginosa may not promote long-term respiratory dysfunction, but identification of P. aeruginosa may delay decannulation.
Sections du résumé
BACKGROUND
BACKGROUND
While bacteria identification on respiratory cultures is associated with poor short-term outcomes in children with bronchopulmonary dysplasia (BPD) and tracheostomies, the influence on longer-term respiratory support needs remains unknown.
OBJECTIVE
OBJECTIVE
To determine if respiratory culture growth of pathogenic organisms is associated with ongoing need for respiratory support, decannulation, and death at 3 years posttracheostomy placement in children with BPD and tracheostomies.
METHODS
METHODS
This single center, retrospective cohort study included infants and children with BPD and tracheostomies placed 2010-2018 and ≥1 respiratory culture obtained in 36 months posttracheostomy. Primary predictor was any pathogen identified on respiratory culture. Additional predictors were any Pseudomonas aeruginosa and chronic P. aeruginosa identification. Outcomes included continued use of respiratory support (e.g., oxygen, positive pressure), decannulation, and death at 3 years posttracheostomy. We used Poisson regression models to examine the relationship between respiratory organisms and outcomes, controlling for patient-level covariates and within-patient clustering.
RESULTS
RESULTS
Among 170 children, 59.4% had a pathogen identified, 28.8% ever had P. aeruginosa, and 3.5% had chronic P. aeruginosa. At 3 years, 33.1% of alive children required ongoing respiratory support and 24.8% achieved decannulation; 18.9% were deceased. In adjusted analysis, any pathogen and P. aeruginosa were not associated with ongoing respiratory support or mortality. However, P. aeruginosa was associated with decreased decannulation probability (adjusted risk ratio 0.48, 95% CI 0.23-0.98). Chronic P. aeruginosa was associated with lower survival probability.
CONCLUSION
CONCLUSIONS
Our findings suggest that respiratory pathogens including P. aeruginosa may not promote long-term respiratory dysfunction, but identification of P. aeruginosa may delay decannulation.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Gerber Foundation
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Wright MFA, Wallis C. Investigation and management of the long-term ventilated premature infant. Early Hum Dev. 2018;126:10-17. doi:10.1016/j.earlhumdev.2018.08.015
Ralser E, Mueller W, Haberland C, et al. Rehospitalization in the first 2 years of life in children born preterm. Acta Paediatr (Stockholm). 2012;101(1):e1-e5. doi:10.1111/j.1651-2227.2011.02404.x
Akangire G, Taylor JB, McAnany S, et al. Respiratory, growth, and survival outcomes of infants with tracheostomy and ventilator dependence. Pediatr Res. 2021;90(2):381-389. doi:10.1038/s41390-020-01183-x
Watters K, O'Neill M, Zhu H, Graham RJ, Hall M, Berry J. Two-year mortality, complications, and healthcare use in children with medicaid following tracheostomy. Laryngoscope. 2016;126(11):2611-2617. doi:10.1002/lary.25972
Tracy MK, Berkelhamer SK. Bronchopulmonary dysplasia and pulmonary outcomes of prematurity. Pediatr Ann. 2019;48(4):e148-e153. doi:10.3928/19382359-20190325-03
Cristea AI, Carroll AE, Davis SD, Swigonski NL, Ackerman VL. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics. 2013;132(3):e727-e734. doi:10.1542/peds.2012-2990
Overman AE, Liu M, Kurachek SC, et al. Tracheostomy for infants requiring prolonged mechanical ventilation: 10 years' experience. Pediatrics. 2013;131(5):e1491-e1496. doi:10.1542/peds.2012-1943
Edwards JD, Kun SS, Keens TG. Outcomes and causes of death in children on home mechanical ventilation via tracheostomy: an institutional and literature review. J Pediatr. 2010;157(6):955-959. doi:10.1016/j.jpeds.2010.06.012
Akangire G, Manimtim W. Tracheostomy in infants with severe bronchopulmonary dysplasia: a review. Front Pediatr. 2023;10:1066367. doi:10.3389/fped.2022.1066367
Watters KF. Tracheostomy in infants and children. Respir Care. 2017;62(6):799-825. doi:10.4187/respcare.05366
Akangire G, Lachica C, Noel-MacDonnell J, et al. Outcomes of infants with severe bronchopulmonary dysplasia who received tracheostomy and home ventilation. Pediatr Pulmonol. 2023;58(3):753-762. doi:10.1002/ppul.26248
House M, Nathan A, Bhuiyan MAN, Ahlfeld SK. Morbidity and respiratory outcomes in infants requiring tracheostomy for severe bronchopulmonary dysplasia. Pediatr Pulmonol. 2021;56(8):2589-2596. doi:10.1002/ppul.25455
Russell CJ, Simon TD, Mamey MR, Newth CJL, Neely MN. Pseudomonas aeruginosa and post-tracheotomy bacterial respiratory tract infection readmissions. Pediatr Pulmonol. 2017;52(9):1212-1218. doi:10.1002/ppul.23716
Konstan MW, Morgan WJ, Butler SM, et al. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr. 2007;151(2):134-139. doi:10.1016/j.jpeds.2007.03.006
Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40(6):727-736. doi:10.1055/s-0039-1698464
Razvi S, Quittell L, Sewall A, Quinton H, Marshall B, Saiman L. Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest. 2009;136(6):1554-1560. doi:10.1378/chest.09-0132
Sanders DB, Bittner RC, Rosenfeld M, Redding GJ, Goss CH. Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis. Pediatr Pulmonol. 2011;46(4):393-400. doi:10.1002/ppul.21374
Amadori A, Antonelli A, Balteri I, Schreiber A, Bugiani M, De Rose V. Recurrent exacerbations affect FEV(1) decline in adult patients with cystic fibrosis. Respir Med. 2009;103(3):407-413. doi:10.1016/j.rmed.2008.09.024
Sanders CD, Guimbellot JS, Muhlebach MS, Lin FC, Gilligan P, Esther Jr., CR. Tracheostomy in children: epidemiology and clinical outcomes. Pediatr Pulmonol. 2018;53(9):1269-1275. doi:10.1002/ppul.24071
Russell CJ, Simon TD, Neely MN. Development of chronic pseudomonas aeruginosa-positive respiratory cultures in children with tracheostomy. Lung. 2019;197(6):811-817. doi:10.1007/s00408-019-00285-6
Steuart R, Ale GB, Woolums A, et al. Respiratory culture organism isolation and test characteristics in children with tracheostomies with and without acute respiratory infection. Pediatr Pulmonol. 2023;58:1481-1491. doi:10.1002/ppul.26349
Feudtner C, Feinstein JA, Zhong W, Hall M, Dai D. Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr. 2014;14:199. doi:10.1186/1471-2431-14-199
Lewis TR, Kielt MJ, Walker VP, et al. Association of racial disparities with in-hospital outcomes in severe bronchopulmonary dysplasia. JAMA Pediatr. 2022;176(9):852-859. doi:10.1001/jamapediatrics.2022.2663
Team, R Core. R: A language and environment for statistical computing. MSOR connections 1. 2014:1-3912. http://lib.stat.cmu.edu/R/CRAN/doc/manuals/r-devel/fullrefman.pdf
Sanders DB, Bittner RCL, Rosenfeld M, Hoffman LR, Redding GJ, Goss CH. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Respir Crit Care Med. 2010;182(5):627-632. doi:10.1164/rccm.200909-1421OC
Sanders DB, Hoffman LR, Emerson J, et al. Return of FEV1 after pulmonary exacerbation in children with cystic fibrosis. Pediatr Pulmonol. 2010;45(2):127-134. doi:10.1002/ppul.21117
de Boer K, Vandemheen KL, Tullis E, et al. Exacerbation frequency and clinical outcomes in adult patients with cystic fibrosis. Thorax. 2011;66(8):680-685. doi:10.1136/thx.2011.161117
Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421-438. doi:10.1016/j.ccm.2020.06.007
Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet. 2007;370(9589):786-796. doi:10.1016/s0140-6736(07)61382-8
Dang X, Kang Y, Wang X, et al. Frequent exacerbators of chronic obstructive pulmonary disease have distinguishable sputum microbiome signatures during clinical stability. Front Microbiol. 2022;13:1037037. doi:10.3389/fmicb.2022.1037037
Maddux AB, Mourani PM, Miller K, et al. Identifying long-term morbidities and health trajectories after prolonged mechanical ventilation in children using state all payer claims data. Pediatr Crit Care Med. 2022;23(4):e189-e198. doi:10.1097/pcc.0000000000002909
Kompare M, Weinberger M. Protracted bacterial bronchitis in young children: association with airway malacia. J Pediatr. 2012;160(1):88-92. doi:10.1016/j.jpeds.2011.06.049
de Vries JJV, Chang AB, Marchant JM. Comparison of bronchoscopy and bronchoalveolar lavage findings in three types of suppurative lung disease. Pediatr Pulmonol. 2018;53(4):467-474. doi:10.1002/ppul.23952
Teplitzky TB, Kou YF, Bozkanat KM, Johnson RF, Chorney SR. Pathogenic bacteria in bronchoalveolar lavage cultures and pediatric laryngotracheal reconstruction outcomes. Pediatr Pulmonol. 2023;58:1438-1443. doi:10.1002/ppul.26338
Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to pseudomonas aeruginosa. Chest. 2011;139(4):909-919. doi:10.1378/chest.10-0166
Metersky ML, Frei CR, Mortensen EM. Predictors of pseudomonas and methicillin-resistant Staphylococcus aureus in hospitalized patients with healthcare-associated pneumonia. Respirology. 2016;21(1):157-163. doi:10.1111/resp.12651
Idigo AJ, Wells JM, Brown ML, et al. Clinical risk factors for admission with pseudomonas and multidrug-resistant pseudomonas community-acquired pneumonia. Antimicrob Resist Infect Control. 2022;11(1):95. doi:10.1186/s13756-022-01137-4
Tiffany CR, Bäumler AJ. Dysbiosis: from fiction to function. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G602-G608. doi:10.1152/ajpgi.00230.2019
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9:2640. doi:10.3389/fimmu.2018.02640
Gauguet S, D'Ortona S, Ahnger-Pier K, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun. 2015;83(10):4003-4014. doi:10.1128/iai.00037-15
Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65(4):575-583. doi:10.1136/gutjnl-2015-309728
Niederman MS, Ferranti RD, Zeigler A, Merrill WW, Reynolds HY. Respiratory infection complicating long-term tracheostomy. Chest. 1984;85(1):39-44.
Thorburn K, Jardine M, Taylor N, Reilly N, Sarginson RE, van Saene HKF. Antibiotic-resistant bacteria and infection in children with cerebral palsy requiring mechanical ventilation. Pediatr Critic Care Med. 2009;10(2):222-226. doi:10.1097/PCC.0b013e31819368ac
Warniment A, Steuart R, Rodean J, et al. Variation in bacterial respiratory culture results in children with neurologic impairment. Hosp Pediatr. 2021;11(11):e326-e333. doi:10.1542/hpeds.2020-005314
Gallego M, Pomares X, Espasa M, et al. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors. BMC Pulm Med. 2014;14:103. doi:10.1186/1471-2466-14-103
Ashkenazi-Hoffnung L, Ari A, Bilavsky E, Scheuerman O, Amir J, Prais D. Pseudomonas aeruginosa identified as a key pathogen in hospitalised children with aspiration pneumonia and a high aspiration risk. Acta Paediatr. 2016;105(12):e588-e592. doi:10.1111/apa.13523
Borgatta B, Lagunes L, Imbiscuso AT, Larrosa MN, Lujàn M, Rello J. Infections in intensive care unit adult patients harboring multidrug-resistant pseudomonas aeruginosa: implications for prevention and therapy. Eur J Clin Microbiol Infect Dis. 2017;36(7):1097-1104. doi:10.1007/s10096-016-2894-3
Manuck TA. Racial and ethnic differences in preterm birth: a complex, multifactorial problem. Semin Perinatol2017;41(8):511-518. doi:10.1053/j.semperi.2017.08.010
2022 March of Dimes Report Card. 2022. https://www.marchofdimes.org/report-card
Anderson JG, Rogers EE, Baer RJ, et al. Racial and ethnic disparities in preterm infant mortality and severe morbidity: a population-based study. Neonatology. 2018;113(1):44-54. doi:10.1159/000480536
Townsel C, Keller R, Kuo CL, Campbell WA, Hussain N. Racial/Ethnic disparities in morbidity and mortality for preterm neonates admitted to a tertiary neonatal intensive care unit. J Racial and Ethn Health Disparities. 2018;5(4):867-874. doi:10.1007/s40615-017-0433-2
McCaleb R, Warren RH, Willis D, Maples HD, Bai S, O'Brien CE. Description of respiratory microbiology of children with long-term tracheostomies. Respir Care. 2016;61(4):447-452. doi:10.4187/respcare.03518