A reductionist paradigm for high-throughput behavioural fingerprinting in
D. melanogaster
behaviour
computational biology
ethomics
fingerprinting
neuroscience
open source
pharmacology
systems biology
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
08 11 2023
08 11 2023
Historique:
medline:
9
11
2023
pubmed:
8
11
2023
entrez:
8
11
2023
Statut:
epublish
Résumé
Understanding how the brain encodes behaviour is the ultimate goal of neuroscience and the ability to objectively and reproducibly describe and quantify behaviour is a necessary milestone on this path. Recent technological progresses in machine learning and computational power have boosted the development and adoption of systems leveraging on high-resolution video recording to track an animal pose and describe behaviour in all four dimensions. However, the high temporal and spatial resolution that these systems offer must come as a compromise with their throughput and accessibility. Here, we describe
Identifiants
pubmed: 37938101
doi: 10.7554/eLife.86695
pii: 86695
pmc: PMC10631757
doi:
pii:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011178/1
Pays : United Kingdom
Organisme : NIH HHS
ID : P40 OD018537
Pays : United States
Informations de copyright
© 2023, Jones et al.
Déclaration de conflit d'intérêts
HJ, JW, LF, CG, GG No competing interests declared
Références
Neuron. 2015 Dec 16;88(6):1121-1135
pubmed: 26687221
Science. 2000 Mar 10;287(5459):1834-7
pubmed: 10710313
PLoS One. 2019 Jan 16;14(1):e0209331
pubmed: 30650089
Nat Methods. 2009 Jun;6(6):451-7
pubmed: 19412169
Nat Methods. 2021 Aug;18(8):975-981
pubmed: 34354294
Cell Syst. 2017 Nov 22;5(5):527-531.e3
pubmed: 29102608
Nature. 2021 Oct;598(7881):479-482
pubmed: 34588694
Nat Neurosci. 2018 Sep;21(9):1281-1289
pubmed: 30127430
PLoS Biol. 2017 Oct 19;15(10):e2003026
pubmed: 29049280
Nat Neurosci. 2020 Nov;23(11):1433-1443
pubmed: 32958923
Nat Protoc. 2019 Jul;14(7):2152-2176
pubmed: 31227823
Nat Commun. 2022 Jan 12;13(1):291
pubmed: 35022402
Nat Methods. 2013 Jan;10(1):64-7
pubmed: 23202433
Proc Biol Sci. 2020 May 27;287(1927):20200838
pubmed: 32453986
Pestic Biochem Physiol. 2022 Oct;187:105217
pubmed: 36127059
PLoS One. 2010 Jan 27;5(1):e8793
pubmed: 20111707
Bioinform Adv. 2023 Sep 20;3(1):vbad132
pubmed: 37818176
Neuron. 2000 Jan;25(1):129-38
pubmed: 10707978
Elife. 2018 Aug 17;7:
pubmed: 30117804
Nat Commun. 2021 Aug 31;12(1):5188
pubmed: 34465784
Nat Methods. 2019 Jan;16(1):117-125
pubmed: 30573820
Brain Res Mol Brain Res. 1992 Oct;15(3-4):339-48
pubmed: 1279355
Mol Syst Biol. 2021 May;17(5):e10267
pubmed: 34031985
Sci Adv. 2019 Feb 20;5(2):eaau9253
pubmed: 30801012
Insect Biochem Mol Biol. 2014 Nov;54:11-21
pubmed: 25193377
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6706-11
pubmed: 25953335
Elife. 2023 Nov 08;12:
pubmed: 37938101
Neuron. 2019 Oct 9;104(1):11-24
pubmed: 31600508
Invert Neurosci. 2007 Mar;7(1):17-30
pubmed: 17206406
J Econ Entomol. 1990 Oct;83(5):1733-7
pubmed: 2124226
Proc Natl Acad Sci U S A. 2020 May 5;117(18):10024-10034
pubmed: 32303656