Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean.


Journal

ISME communications
ISSN: 2730-6151
Titre abrégé: ISME Commun
Pays: England
ID NLM: 9918205372406676

Informations de publication

Date de publication:
22 Mar 2021
Historique:
received: 11 12 2020
accepted: 20 01 2021
revised: 14 01 2021
medline: 22 3 2021
pubmed: 22 3 2021
entrez: 8 11 2023
Statut: epublish

Résumé

Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.

Identifiants

pubmed: 37938231
doi: 10.1038/s43705-021-00002-6
pii: 10.1038/s43705-021-00002-6
pmc: PMC9723583
doi:

Types de publication

Journal Article

Langues

eng

Pagination

5

Subventions

Organisme : National Science Foundation (NSF)
ID : 1656311

Informations de copyright

© 2021. The Author(s).

Références

ISME J. 2013 Oct;7(10):1962-73
pubmed: 23702516
Microbiol Mol Biol Rev. 2013 Jun;77(2):267-76
pubmed: 23699258
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
pubmed: 1608980
Environ Microbiol. 2014 Aug;16(8):2444-57
pubmed: 24373102
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10
pubmed: 18316740
Appl Environ Microbiol. 2004 Jul;70(7):4411-4
pubmed: 15240332
FEMS Microbiol Ecol. 2016 Jan;92(1):
pubmed: 26613749
Environ Microbiol. 2020 Sep;22(9):3823-3837
pubmed: 32643243
Appl Environ Microbiol. 2006 Mar;72(3):2141-7
pubmed: 16517664
Front Microbiol. 2020 Mar 20;11:465
pubmed: 32265888
ISME J. 2015 Aug;9(8):1747-63
pubmed: 25615436
ISME J. 2016 Sep;10(9):2158-73
pubmed: 26953597
Sci Data. 2018 Jan 16;5:170203
pubmed: 29337314
Nature. 2007 Jan 11;445(7124):210-3
pubmed: 17215843
Nature. 1992 Mar 12;356(6365):148-9
pubmed: 1545865
Sci Data. 2016 Jul 05;3:160050
pubmed: 27377622
ISME J. 2017 Nov;11(11):2510-2525
pubmed: 28731479
Nat Commun. 2018 Nov 30;9(1):5114
pubmed: 30504855
PLoS One. 2011 May 09;6(5):e19725
pubmed: 21573025
Microbiome. 2018 Jul 10;6(1):128
pubmed: 29991350
FEMS Microbiol Ecol. 2007 Dec;62(3):242-57
pubmed: 17991018
Nature. 2006 Feb 16;439(7078):847-50
pubmed: 16482157
Methods Enzymol. 2013;531:237-50
pubmed: 24060124
Genome Biol. 2014;15(12):550
pubmed: 25516281
EMBO J. 2003 Apr 15;22(8):1725-31
pubmed: 12682005
ISME J. 2015 Jul;9(7):1619-34
pubmed: 25535935
Nat Microbiol. 2016 Feb 29;1:16005
pubmed: 27572439
Nat Microbiol. 2017 Nov;2(11):1533-1542
pubmed: 28894102
Environ Microbiol. 2009 Jun;11(6):1358-75
pubmed: 19207571
Nature. 2005 Nov 3;438(7064):82-5
pubmed: 16267553
Res Microbiol. 2001 Apr-May;152(3-4):259-70
pubmed: 11421273
Environ Microbiol. 2018 Feb;20(2):734-754
pubmed: 29235710
Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54
pubmed: 27630250
Environ Microbiol. 2004 Sep;6(9):959-69
pubmed: 15305921
Environ Microbiol. 2007 May;9(5):1162-75
pubmed: 17472632
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11085-90
pubmed: 25024226
Ann Rev Mar Sci. 2019 Jan 3;11:131-158
pubmed: 30212260
Front Microbiol. 2016 May 09;7:639
pubmed: 27242681
J Bacteriol. 1977 Apr;130(1):384-92
pubmed: 323236
Microbiol Resour Announc. 2019 Oct 3;8(40):
pubmed: 31582460
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
FEMS Microbiol Lett. 1997 Jul 1;152(1):57-64
pubmed: 9228771
Environ Microbiol. 2000 Oct;2(5):516-29
pubmed: 11233160
Sci Rep. 2016 Oct 19;6:35470
pubmed: 27759035
Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9
pubmed: 26546518
J Bacteriol. 1997 Feb;179(3):853-62
pubmed: 9006043
Appl Environ Microbiol. 2005 May;71(5):2303-9
pubmed: 15870315
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6004-9
pubmed: 23536290
Nat Commun. 2015 Nov 17;6:8933
pubmed: 26573375
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E400-E408
pubmed: 29255014
Amino Acids. 2018 Dec;50(12):1647-1661
pubmed: 30238253
J Mol Biol. 2016 Feb 22;428(4):726-731
pubmed: 26585406
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Front Microbiol. 2014 Apr 24;5:185
pubmed: 24795712
Appl Environ Microbiol. 1997 Jan;63(1):50-6
pubmed: 8979338
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Environ Microbiol. 2012 Jan;14(1):228-39
pubmed: 21985473
Science. 2012 Feb 3;335(6068):587-90
pubmed: 22301318
ISME J. 2019 Mar;13(3):663-675
pubmed: 30323263
Nat Microbiol. 2016 Apr 11;1:16048
pubmed: 27572647
Appl Environ Microbiol. 2019 Dec 13;86(1):
pubmed: 31653788
mBio. 2017 Sep 12;8(5):
pubmed: 28900024
Science. 2000 Sep 15;289(5486):1902-6
pubmed: 10988064
Nat Commun. 2019 Jan 17;10(1):271
pubmed: 30655514
Appl Environ Microbiol. 2004 Feb;70(2):781-9
pubmed: 14766555
Microbiologyopen. 2019 Sep;8(9):e00852
pubmed: 31264806
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Front Microbiol. 2017 Jun 15;8:1098
pubmed: 28663746
Science. 2014 Jul 11;345(6193):207-12
pubmed: 25013074
Environ Microbiol. 2013 Apr;15(4):1190-203
pubmed: 23176588
J Phycol. 2008 Oct;44(5):1235-49
pubmed: 27041720
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
Nucleic Acids Res. 2018 Jan 4;46(D1):D624-D632
pubmed: 29145643
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Front Microbiol. 2015 Oct 13;6:1108
pubmed: 26528260
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
ISME J. 2018 Jun;12(6):1473-1485
pubmed: 29445129
PeerJ. 2017 Jul 10;5:e3558
pubmed: 28713657
Nat Microbiol. 2018 Jul;3(7):804-813
pubmed: 29891866
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101
pubmed: 29771380
ISME J. 2019 Dec;13(12):3024-3036
pubmed: 31447484
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786
Environ Microbiol. 2018 Aug;20(8):3012-3030
pubmed: 29968336

Auteurs

Julian Damashek (J)

Department of Marine Sciences, University of Georgia, Athens, GA, USA. judamash@utica.edu.
Department of Biology, Utica College, Utica, NY, USA. judamash@utica.edu.

Aimee Oyinlade Okotie-Oyekan (AO)

Department of Marine Sciences, University of Georgia, Athens, GA, USA.
Environmental Studies Program, University of Oregon, Eugene, OR, USA.

Scott Michael Gifford (SM)

Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA.

Alexey Vorobev (A)

Department of Marine Sciences, University of Georgia, Athens, GA, USA.
INSERM U932, PSL University, Institut Curie, Paris, France.

Mary Ann Moran (MA)

Department of Marine Sciences, University of Georgia, Athens, GA, USA.

James Timothy Hollibaugh (JT)

Department of Marine Sciences, University of Georgia, Athens, GA, USA.

Classifications MeSH