The ability of Phaeobacter inhibens to produce tropodithietic acid influences the community dynamics of a microalgal microbiome.


Journal

ISME communications
ISSN: 2730-6151
Titre abrégé: ISME Commun
Pays: England
ID NLM: 9918205372406676

Informations de publication

Date de publication:
03 Nov 2022
Historique:
received: 14 01 2022
accepted: 19 10 2022
revised: 14 10 2022
medline: 8 11 2023
pubmed: 8 11 2023
entrez: 8 11 2023
Statut: epublish

Résumé

Microbial secondary metabolites facilitate microbial interactions and are crucial for understanding the complexity of microbial community dynamics. The purpose of the present study was to determine how a secondary metabolite producing marine bacteria or its metabolite deficient mutant affected the microbiome of the marine microalgae Tetraselmis suecica during a 70 day long co-evolution experiment. Using 16S rRNA gene amplicon sequencing, we found that neither the tropodithietic acid (TDA)-producing Phaeobacter inhibens wildtype nor the TDA-deficient mutant had major impacts on the community composition. However, a subset of strains, displayed temporally different relative abundance trajectories depending on the presence of P. inhibens. In particular, a Winogradskyella strain displayed temporal higher relative abundance when the TDA-producing wildtype was present. Numbers of the TDA-producing wildtype were reduced significantly more than those of the mutant over time indicating that TDA production was not an advantage. In communities without the P. inhibens wildtype strain, an indigenous population of Phaeobacter increased over time, indicating that indigenous Phaeobacter populations cannot co-exist with the TDA-producing wildtype. Despite that TDA was not detected chemically, we detected transcripts of the tdaC gene indicating that TDA could be produced in the microbial community associated with the algae. Our work highlights the importance of deciphering longitudinal strain dynamics when addressing the ecological effect of secondary metabolites in a relevant natural community.

Identifiants

pubmed: 37938341
doi: 10.1038/s43705-022-00193-6
pii: 10.1038/s43705-022-00193-6
pmc: PMC9723703
doi:

Types de publication

Journal Article

Langues

eng

Pagination

109

Subventions

Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF137

Informations de copyright

© 2022. The Author(s).

Références

ISME J. 2017 Feb;11(2):569-583
pubmed: 27552638
Front Microbiol. 2016 Jul 26;7:1155
pubmed: 27507966
Trends Microbiol. 2015 Nov;23(11):719-729
pubmed: 26439296
Nature. 2004 Jan 29;427(6973):445-8
pubmed: 14749832
Nat Microbiol. 2018 Nov;3(11):1295-1303
pubmed: 30250246
Appl Environ Microbiol. 2022 Mar 22;88(6):e0241821
pubmed: 35080904
Elife. 2016 Nov 18;5:
pubmed: 27855786
Antonie Van Leeuwenhoek. 2019 May;112(5):731-739
pubmed: 30519785
Environ Microbiol Rep. 2019 Jun;11(3):401-413
pubmed: 30277320
Front Microbiol. 2018 Nov 02;9:2601
pubmed: 30450086
mSystems. 2018 Mar 27;3(2):
pubmed: 29629421
Beilstein J Org Chem. 2020 Dec 4;16:2983-2998
pubmed: 33335606
Environ Microbiol. 2014 May;16(5):1252-66
pubmed: 24118907
Nucleic Acids Res. 2013 Jan 7;41(1):e1
pubmed: 22933715
mSphere. 2022 Aug 31;7(4):e0023122
pubmed: 35730934
Trends Microbiol. 2016 Oct;24(10):833-845
pubmed: 27546832
ISME J. 2018 Jun;12(7):1658-1667
pubmed: 29463893
Appl Environ Microbiol. 2005 Apr;71(4):1729-36
pubmed: 15811995
Int J Syst Evol Microbiol. 2006 Jun;56(Pt 6):1293-1304
pubmed: 16738106
ISME J. 2017 Jun;11(6):1483-1499
pubmed: 28106881
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
FEMS Microbiol Ecol. 2019 Jun 1;95(6):
pubmed: 31034047
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
ISME J. 2012 Feb;6(2):461-70
pubmed: 21776032
PLoS One. 2012;7(8):e43996
pubmed: 22928051
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Genome Biol Evol. 2017 Dec 1;9(12):3297-3311
pubmed: 29194520
Appl Environ Microbiol. 2005 Nov;71(11):7263-70
pubmed: 16269767
Nat Commun. 2020 May 13;11(1):2386
pubmed: 32404904
Antimicrob Agents Chemother. 2011 Apr;55(4):1332-7
pubmed: 21263047
J Bacteriol. 2010 Sep;192(17):4377-87
pubmed: 20601479
Genome Res. 2016 Dec;26(12):1721-1729
pubmed: 27852649
Appl Environ Microbiol. 2016 Jul 15;82(15):4802-4810
pubmed: 27235441
Nat Rev Microbiol. 2013 Apr;11(4):285-93
pubmed: 23456045
Microbiome. 2018 Dec 17;6(1):226
pubmed: 30558668
Int J Syst Bacteriol. 1998 Apr;48 Pt 2:537-42
pubmed: 9731295
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
PLoS Comput Biol. 2017 Feb 21;13(2):e1005404
pubmed: 28222096
Org Lett. 2017 Oct 6;19(19):5138-5141
pubmed: 28920692
Microbiome. 2019 Jun 3;7(1):85
pubmed: 31159875
Mar Drugs. 2014 Dec 10;12(12):5960-78
pubmed: 25513851
Syst Appl Microbiol. 2004 May;27(3):360-71
pubmed: 15214642
Bioinformatics. 2013 Apr 15;29(8):1072-5
pubmed: 23422339
ISME J. 2012 Dec;6(12):2229-44
pubmed: 22717884
Appl Environ Microbiol. 2020 Jul 2;86(14):
pubmed: 32385083
Appl Environ Microbiol. 2012 Jul;78(14):4771-80
pubmed: 22582055
FEMS Microbiol Ecol. 2021 Mar 31;97(4):
pubmed: 33693627
mSystems. 2021 Feb 23;6(1):
pubmed: 33622852
Appl Environ Microbiol. 2006 Aug;72(8):5547-55
pubmed: 16885308
ISME J. 2018 Aug;12(8):1940-1951
pubmed: 29670216
Sci Rep. 2017 Apr 7;7(1):730
pubmed: 28389641
mBio. 2016 Mar 22;7(2):e02118
pubmed: 27006458
Nat Commun. 2016 Jun 17;7:11965
pubmed: 27311813
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):
pubmed: 33526668
Appl Environ Microbiol. 2004 Apr;70(4):2560-5
pubmed: 15066861
Appl Environ Microbiol. 2005 Oct;71(10):5665-77
pubmed: 16204474
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Elife. 2022 Feb 04;11:
pubmed: 35119363
Mol Biol Evol. 2009 Jul;26(7):1641-50
pubmed: 19377059
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1630-5
pubmed: 26802120
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11054-9
pubmed: 26216986

Auteurs

Nathalie Nina Suhr Eiris Henriksen (NNSE)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.

Morten Dencker Schostag (MD)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.

Simone Rosen Balder (SR)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.

Pernille Kjersgaard Bech (PK)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.

Mikael Lenz Strube (ML)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.

Eva Christina Sonnenschein (EC)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark.
Department of Biosciences, Swansea University, Singleton Park, SA2 8PP, Swansea, United Kingdom.

Lone Gram (L)

Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, DK-2800 Kgs, Lyngby, Denmark. gram@bio.dtu.dk.

Classifications MeSH