The incremental risk of fragility fractures in aging men.


Journal

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
ISSN: 1433-2965
Titre abrégé: Osteoporos Int
Pays: England
ID NLM: 9100105

Informations de publication

Date de publication:
Mar 2024
Historique:
received: 16 06 2023
accepted: 18 10 2023
medline: 15 2 2024
pubmed: 8 11 2023
entrez: 8 11 2023
Statut: ppublish

Résumé

While the United States Preventative Services Task Force recommends osteoporosis screening for women 65 years and older, there is no definitive recommendation for routine osteoporosis screening in men. The purpose of this study was to determine the age at which the odds of fragility fractures (FFx) increase in men to help guide future policy discussions evaluating an optimal screening strategy in this population. Men older than 49 years were identified in the PearlDiver Patient Records Database. Patients were excluded if they had a prior fragility fracture, if they were at high risk for osteoporosis due to comorbidities, or if they carried a diagnosis of and/or were on treatment for osteoporosis. The prevalence of FFx was trended for each age group. A stratum-specific likelihood ratio (SSLR) analysis was conducted to identify data-driven strata that maximize the incremental FFx risk by age for men. Logistic regression analyses controlling for potential confounders were conducted to test these identified strata. The incidence of FFx started to increase after the age of 64 years for men. Further, the identified data-driven age strata associated with a significant and incremental difference in fragility fractures were the following: 50-64, 65-69, 70-72, 73-75, 76-78, 79-80, and 81+. When compared to the youngest age stratum (50-64 years), multivariable regression showed the risk of fragility fracture incrementally increased starting in those aged 70-72 (RR, 1.31; 95% CI. 1.21-1.46; p < 0.001) with the highest risk in those aged 81+ (RR, 5.35; 95% CI, 5.10-5.62; p < 0.001). In men without a pre-existing history of osteoporosis, the risk of fragility fractures starts to increase after the age of 70. Further work building upon these data may help to identify a specific age at which routine bone health screening in males can help to minimize fractures and their associated morbidity and mortality.

Identifiants

pubmed: 37938405
doi: 10.1007/s00198-023-06956-8
pii: 10.1007/s00198-023-06956-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

495-503

Informations de copyright

© 2023. International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.

Références

Han RJ, Sing DC, Feeley BT et al (2016) Proximal humerus fragility fractures: recent trends in nonoperative and operative treatment in the Medicare population. J Shoulder Elbow Surg 25:256–261. https://doi.org/10.1016/j.jse.2015.07.015
doi: 10.1016/j.jse.2015.07.015 pubmed: 26440695
Friedman SM, Mendelson DA (2014) Epidemiology of fragility fractures. Clin Geriatr Med 30:175–181. https://doi.org/10.1016/j.cger.2014.01.001
doi: 10.1016/j.cger.2014.01.001 pubmed: 24721358
Cohn MR, Gianakos AL, Grueter K et al (2018) Update on the comprehensive approach to fragility fractures. J Orthop Trauma 32:480–490. https://doi.org/10.1097/BOT.0000000000001244
doi: 10.1097/BOT.0000000000001244 pubmed: 30036208
Nayak S, Greenspan SL (2016) Cost-effectiveness of osteoporosis screening strategies for men. J Bone Miner Res 31:1189–1199. https://doi.org/10.1002/jbmr.2784
doi: 10.1002/jbmr.2784 pubmed: 26751984
Williams SA, Daigle SG, Weiss R et al (2021) Economic burden of osteoporosis-related fractures in the US Medicare Population. Ann Pharmacother 55:821–829. https://doi.org/10.1177/1060028020970518
doi: 10.1177/1060028020970518 pubmed: 33148010
Valentin G, Friis K, Nielsen CP et al (2021) Fragility fractures and health-related quality of life: does socio-economic status widen the gap? A population-based study. Osteoporos Int 32:63–73. https://doi.org/10.1007/s00198-020-05540-8
doi: 10.1007/s00198-020-05540-8 pubmed: 32681362
US Preventive Services Task Force, Curry SJ, Krist AH et al (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force Recommendation Statement. JAMA 319:2521–2531. https://doi.org/10.1001/jama.2018.7498
doi: 10.1001/jama.2018.7498
Mears SC, Kates SL (2015) A guide to improving the care of patients with fragility fractures, Edition 2. Geriatr Orthop Surg Rehabil 6:58–120. https://doi.org/10.1177/2151458515572697
doi: 10.1177/2151458515572697 pubmed: 26246957 pmcid: 4430408
Armas LAG, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486. https://doi.org/10.1016/j.ecl.2012.04.006
doi: 10.1016/j.ecl.2012.04.006 pubmed: 22877425
Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475. https://doi.org/10.1359/jbmr.061113
doi: 10.1359/jbmr.061113 pubmed: 17144789
Reginster J-Y, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9. https://doi.org/10.1016/j.bone.2005.11.024
doi: 10.1016/j.bone.2005.11.024 pubmed: 16455317
Khosla S, Shane E (2016) A crisis in the treatment of osteoporosis. J Bone Miner Res 31:1485–1487. https://doi.org/10.1002/jbmr.2888
doi: 10.1002/jbmr.2888 pubmed: 27335158
Alswat KA (2017) Gender disparities in osteoporosis. J Clin Med Res 9:382–387. https://doi.org/10.14740/jocmr2970w
doi: 10.14740/jocmr2970w pubmed: 28392857 pmcid: 5380170
Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2
doi: 10.1007/s00198-014-2794-2 pubmed: 25182228 pmcid: 4176573
Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA 302:1573–1579. https://doi.org/10.1001/jama.2009.1462
doi: 10.1001/jama.2009.1462 pubmed: 19826027 pmcid: 4410861
Viswanathan VK, Shetty AP, Rai N et al (2023) What is the role of CT-based Hounsfield unit assessment in the evaluation of bone mineral density in patients undergoing 1- or 2-level lumbar spinal fusion for degenerative spinal pathologies?: a prospective study. Spine J. https://doi.org/10.1016/j.spinee.2023.05.015
Haentjens P, Magaziner J, Colón-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152:380–390. https://doi.org/10.7326/0003-4819-152-6-201003160-00008
doi: 10.7326/0003-4819-152-6-201003160-00008 pubmed: 20231569 pmcid: 3010729
Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521. https://doi.org/10.1001/jama.2009.50
doi: 10.1001/jama.2009.50 pubmed: 19190316
Trombetti A, Herrmann F, Hoffmeyer P et al (2002) Survival and potential years of life lost after hip fracture in men and age-matched women. Osteoporos Int 13:731–737. https://doi.org/10.1007/s001980200100
doi: 10.1007/s001980200100 pubmed: 12195537
Rabenda V, Vanoverloop J, Fabri V et al (2008) Low incidence of anti-osteoporosis treatment after hip fracture. J Bone Joint Surg Am 90:2142–2148. https://doi.org/10.2106/JBJS.G.00864
doi: 10.2106/JBJS.G.00864 pubmed: 18829912
Bawa HS, Weick J, Dirschl DR (2015) Anti-osteoporotic therapy after fragility fracture lowers rate of subsequent fracture: analysis of a large population sample. J Bone Joint Surg Am 97:1555–1562. https://doi.org/10.2106/JBJS.N.01275
doi: 10.2106/JBJS.N.01275 pubmed: 26446962
García-Sempere A, Hurtado I, Sanfélix-Genovés J et al (2017) Primary and secondary non-adherence to osteoporotic medications after hip fracture in Spain. The PREV2FO population-based retrospective cohort study. Sci Rep 7:11784. https://doi.org/10.1038/s41598-017-10899-6
doi: 10.1038/s41598-017-10899-6 pubmed: 28924156 pmcid: 5603562
Morin S, Lix LM, Azimaee M et al (2011) Mortality rates after incident non-traumatic fractures in older men and women. Osteoporos Int 22:2439–2448. https://doi.org/10.1007/s00198-010-1480-2
doi: 10.1007/s00198-010-1480-2 pubmed: 21161507
Bouxsein ML, Melton LJ, Riggs BL et al (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21:1475–1482. https://doi.org/10.1359/jbmr.060606
doi: 10.1359/jbmr.060606 pubmed: 16939406
Ahmed LA, Center JR, Bjørnerem A et al (2013) Progressively increasing fracture risk with advancing age after initial incident fragility fracture: the Tromsø study. J Bone Miner Res 28:2214–2221. https://doi.org/10.1002/jbmr.1952
doi: 10.1002/jbmr.1952 pubmed: 23572401
Papaioannou A, Kennedy CC, Ioannidis G et al (2008) The osteoporosis care gap in men with fragility fractures: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 19:581–587. https://doi.org/10.1007/s00198-007-0483-0
doi: 10.1007/s00198-007-0483-0 pubmed: 17924051
Bliuc D, Alarkawi D, Nguyen TV et al (2015) Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 30:637–646. https://doi.org/10.1002/jbmr.2393
doi: 10.1002/jbmr.2393 pubmed: 25359586
Bennett MJ, Center JR, Perry L (2023) Exploring barriers and opportunities to improve osteoporosis care across the acute-to-primary care interface: a qualitative study. Osteoporos Int 34:1249–1262. https://doi.org/10.1007/s00198-023-06748-0
doi: 10.1007/s00198-023-06748-0 pubmed: 37093239 pmcid: 10281902
Manolagas SC (2018) The quest for osteoporosis mechanisms and rational therapies: how far we’ve come, how much further we need to go. J Bone Miner Res 33:371–385. https://doi.org/10.1002/jbmr.3400
doi: 10.1002/jbmr.3400 pubmed: 29405383
Lorentzon M, Cummings SR (2015) Osteoporosis: the evolution of a diagnosis. J Intern Med 277:650–661. https://doi.org/10.1111/joim.12369
doi: 10.1111/joim.12369 pubmed: 25832448
Curtis EM, Moon RJ, Harvey NC, Cooper C (2017) The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104:29–38. https://doi.org/10.1016/j.bone.2017.01.024
doi: 10.1016/j.bone.2017.01.024 pubmed: 28119181 pmcid: 5420448
Agarwal AR, Cohen JS, Jorgensen A et al (2023) Trends in anti-osteoporotic medication utilization following fragility fracture in the USA from 2011 to 2019. Osteoporos Int 34:379–385. https://doi.org/10.1007/s00198-022-06622-5
doi: 10.1007/s00198-022-06622-5 pubmed: 36462054
Kreulen RT, Agarwal AR, Nayar SK et al (2022) SLAP repair and bicep tenodesis: a comparison of utilization and revision rates for SLAP tears. JSES Int 7:290–295. https://doi.org/10.1016/j.jseint.2022.11.001
doi: 10.1016/j.jseint.2022.11.001 pubmed: 36911775 pmcid: 9998736
Agarwal AR, Ahmed AF, Stadecker M et al (2023) Trends in venous thromboembolism after shoulder arthroplasty in the United States: analysis following the 2009 American Academy of Orthopaedic Surgeons Clinical Practical Guidelines. J Am Acad Orthop Surg 31:364–372. https://doi.org/10.5435/JAAOS-D-22-00825
doi: 10.5435/JAAOS-D-22-00825 pubmed: 36727919
Ross BJ, Ross AJ, Lee OC et al (2022) Osteoporosis management and secondary fragility fracture rates in patients with multiple sclerosis: a matched cohort study. Osteoporos Int 33:1999–2010. https://doi.org/10.1007/s00198-022-06451-6
doi: 10.1007/s00198-022-06451-6 pubmed: 35670832
Peirce JC, Cornell RG (1993) Integrating stratum-specific likelihood ratios with the analysis of ROC curves. Med Decis Making 13:141–151. https://doi.org/10.1177/0272989X9301300208
doi: 10.1177/0272989X9301300208 pubmed: 8483399
Gu A, Fassihi SC, Wessel LE et al (2021) Comparison of revision risk based on timing of knee arthroscopy prior to total knee arthroplasty. J Bone Joint Surg Am 103:660–667. https://doi.org/10.2106/JBJS.20.00218
doi: 10.2106/JBJS.20.00218 pubmed: 33849048
Harris AB, Wang KY, Reddy R et al (2022) A novel method for stratification of major complication risk using body mass index thresholds for patients undergoing total hip arthroplasty: a national cohort of 224,413 patients. J Arthroplasty 37:2049–2052. https://doi.org/10.1016/j.arth.2022.04.030
doi: 10.1016/j.arth.2022.04.030 pubmed: 35504445
Navarro SM, Haeberle HS, Mont MA et al (2019) Stratum-specific likelihood ratio analysis: an evidence-based and pragmatic approach to meaningful thresholds in lower extremity Arthroplasty. Surg Technol Int 34:415–420
pubmed: 30574678
Haeberle HS, Navarro SM, Frankel WC et al (2018) Evidence-based thresholds for the volume and cost relationship in total hip arthroplasty: outcomes and economies of scale. J Arthroplasty 33:2398–2404. https://doi.org/10.1016/j.arth.2018.02.093
doi: 10.1016/j.arth.2018.02.093 pubmed: 29666028
Ramkumar PN, Navarro SM, Haeberle HS et al (2017) Evidence-based thresholds for the volume-value relationship in shoulder arthroplasty: outcomes and economies of scale. J Shoulder Elbow Surg 26:1399–1406. https://doi.org/10.1016/j.jse.2017.05.019
doi: 10.1016/j.jse.2017.05.019 pubmed: 28734539
Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181. https://doi.org/10.5312/wjo.v7.i3.171
doi: 10.5312/wjo.v7.i3.171 pubmed: 27004165 pmcid: 4794536
Watts NB, Adler RA, Bilezikian JP et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97:1802–1822. https://doi.org/10.1210/jc.2011-3045
doi: 10.1210/jc.2011-3045 pubmed: 22675062
Drake MT, Murad MH, Mauck KF et al (2012) Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J Clin Endocrinol Metab 97:1861–1870. https://doi.org/10.1210/jc.2011-3058
doi: 10.1210/jc.2011-3058 pubmed: 22466344
Schousboe JT, Taylor BC, Fink HA et al (2007) Cost-effectiveness of bone densitometry followed by treatment of osteoporosis in older men. JAMA 298:629–637. https://doi.org/10.1001/jama.298.6.629
doi: 10.1001/jama.298.6.629 pubmed: 17684185

Auteurs

A R Agarwal (AR)

Department of Orthopaedic Surgery, George Washington University School of Medicine and, Health Sciences, Washington, DC, USA. amil_agarwal@gwmail.gwu.edu.
Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, MD, USA. amil_agarwal@gwmail.gwu.edu.

O Tarawneh (O)

Department of Orthopaedic Surgery, New York Medical College, Valhalla, NY, USA.

J S Cohen (JS)

Department of Orthopaedic Surgery, University of Pennsylvania, Philadelpha, PA, USA.

A Gu (A)

Department of Orthopaedic Surgery, George Washington University School of Medicine and, Health Sciences, Washington, DC, USA.

K F Moseley (KF)

Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, MD, USA.

J N DeBritz (JN)

Department of Orthopaedic Surgery, George Washington University School of Medicine and, Health Sciences, Washington, DC, USA.

G J Golladay (GJ)

Department of Orthopaedic Surgery, Virginia Commonwealth University Health Center, Richmond, VA, USA.

S C Thakkar (SC)

Department of Orthopaedic Surgery, Johns Hopkins Medicine, Baltimore, MD, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH