Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model.
Journal
ISME communications
ISSN: 2730-6151
Titre abrégé: ISME Commun
Pays: England
ID NLM: 9918205372406676
Informations de publication
Date de publication:
28 Oct 2022
28 Oct 2022
Historique:
received:
28
05
2022
accepted:
10
10
2022
revised:
28
09
2022
medline:
8
11
2023
pubmed:
8
11
2023
entrez:
8
11
2023
Statut:
epublish
Résumé
The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont, however the effect of host and algal identity on their community is still unknown. Using the coral model Aiptasia, we quantified and characterized the denitrifier community in a full-factorial design combining two hosts (CC7 and H2) and two strains of algal symbionts of the family Symbiodiniaceae (SSA01 and SSB01). Strikingly, relative abundance of denitrifiers increased by up to 22-fold in photosymbiotic Aiptasia compared to their aposymbiotic (i.e., algal-depleted) counterparts. In line with this, while the denitrifier community in aposymbiotic Aiptasia was largely dominated by diet-associated Halomonas, we observed an increasing relative abundance of an unclassified bacterium in photosymbiotic CC7, and Ketobacter in photosymbiotic H2, respectively. Pronounced changes in denitrifier communities of Aiptasia with Symbiodinium linucheae strain SSA01 aligned with the higher photosynthetic carbon availability of these holobionts compared to Aiptasia with Breviolum minutum strain SSB01. Our results reveal that the presence of algal symbionts increases abundance and alters community structure of denitrifiers in Aiptasia. Thereby, patterns in denitrifier community likely reflect the nutritional status of aposymbiotic vs. symbiotic holobionts. Such a passive regulation of denitrifiers may contribute to maintaining the nitrogen limitation required for the functioning of the cnidarian-algal symbiosis.
Identifiants
pubmed: 37938763
doi: 10.1038/s43705-022-00190-9
pii: 10.1038/s43705-022-00190-9
pmc: PMC9723753
doi:
Types de publication
Journal Article
Langues
eng
Pagination
105Subventions
Organisme : Universität Konstanz (University of Konstanz)
ID : 15902919 FP 029/19
Organisme : Universität Konstanz (University of Konstanz)
ID : 15902919 FP 029/19
Organisme : Universität Konstanz (University of Konstanz)
ID : 15902919 FP 029/19
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 200021_179092
Informations de copyright
© 2022. The Author(s).
Références
Mol Ecol. 2021 Nov;30(22):5888-5899
pubmed: 34473860
ISME J. 2021 Apr;15(4):1222-1235
pubmed: 33342999
ISME J. 2022 Apr;16(4):1110-1118
pubmed: 34857934
Front Microbiol. 2017 Jun 28;8:1187
pubmed: 28702013
ISME J. 2018 Mar;12(3):921-930
pubmed: 29379177
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Proc Biol Sci. 2018 Apr 25;285(1877):
pubmed: 29669898
Front Microbiol. 2017 Nov 24;8:2269
pubmed: 29225592
Front Physiol. 2018 Mar 16;9:214
pubmed: 29615919
Curr Biol. 2018 Aug 20;28(16):2570-2580.e6
pubmed: 30100341
J Phycol. 2013 Jun;49(3):447-58
pubmed: 27007034
Front Microbiol. 2013 Oct 01;4:291
pubmed: 24101916
Evolution. 2014 Feb;68(2):352-67
pubmed: 24134732
ISME J. 2022 Aug;16(8):1883-1895
pubmed: 35444262
Proc Biol Sci. 2015 Nov 7;282(1818):20152257
pubmed: 26511052
PLoS Genet. 2019 Jun 24;15(6):e1008189
pubmed: 31233506
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Environ Microbiol Rep. 2018 Feb;10(1):7-11
pubmed: 29124895
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Environ Microbiol. 2017 Dec;19(12):4897-4912
pubmed: 28892301
Glob Chang Biol. 2017 Sep;23(9):3838-3848
pubmed: 28429531
Nat Commun. 2020 Jul 14;11(1):3514
pubmed: 32665548
Appl Environ Microbiol. 1998 Oct;64(10):3769-75
pubmed: 9758798
Access Microbiol. 2022 Jan 24;4(1):000314
pubmed: 35252752
R Soc Open Sci. 2021 Jun 2;8(6):201835
pubmed: 34109033
Appl Environ Microbiol. 2012 May;78(9):3136-44
pubmed: 22344646
AMB Express. 2016 Dec;6(1):44
pubmed: 27376945
Nat Rev Microbiol. 2007 May;5(5):355-62
pubmed: 17384666
Nat Commun. 2020 Jan 8;11(1):108
pubmed: 31913264
DNA Res. 2002 Dec 31;9(6):189-97
pubmed: 12597275
ISME J. 2016 Jul;10(7):1804-8
pubmed: 26696324
PLoS One. 2016 Apr 27;11(4):e0152693
pubmed: 27119147
PLoS One. 2012;7(9):e46406
pubmed: 23029512
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Trends Microbiol. 2015 Aug;23(8):490-7
pubmed: 25868684
BMC Genomics. 2009 Jun 05;10:258
pubmed: 19500365
Appl Environ Microbiol. 2022 Jan 25;88(2):e0188621
pubmed: 34788073
ISME J. 2014 Nov;8(11):2272-9
pubmed: 24830827
Genes Immun. 2005 Jun;6(4):279-84
pubmed: 15815687
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11893-8
pubmed: 26324906
Front Microbiol. 2021 Apr 08;12:637834
pubmed: 33897642
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5):
pubmed: 33500354
Environ Microbiol. 2019 Jan;21(1):480-495
pubmed: 30452101
ISME J. 2015 Oct;9(10):2261-74
pubmed: 25885563
ISME J. 2020 Feb;14(2):325-334
pubmed: 31690886
Mol Ecol. 2013 Sep;22(17):4366-8
pubmed: 24137737
Sci Rep. 2019 Dec 19;9(1):19460
pubmed: 31857601
Mol Ecol. 2013 Sep;22(17):4499-515
pubmed: 23980764
Methods Mol Biol. 2007;406:89-112
pubmed: 18287689
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W7-13
pubmed: 20435676
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Environ Microbiol. 2020 May;22(5):1675-1687
pubmed: 31943674
ISME J. 2018 Mar;12(3):813-824
pubmed: 29222444
ISME J. 2022 Jan;16(1):68-77
pubmed: 34226659