Metagenomic Thermometer.
community assembly
hot spring
human gut
metagenome
temperature
Journal
DNA research : an international journal for rapid publication of reports on genes and genomes
ISSN: 1756-1663
Titre abrégé: DNA Res
Pays: England
ID NLM: 9423827
Informations de publication
Date de publication:
01 Dec 2023
01 Dec 2023
Historique:
received:
29
05
2023
revised:
06
10
2023
accepted:
03
11
2023
medline:
27
11
2023
pubmed:
9
11
2023
entrez:
8
11
2023
Statut:
ppublish
Résumé
Various microorganisms exist in environments, and each of them has its optimal growth temperature (OGT). The relationship between genomic information and OGT of each species has long been studied, and one such study revealed that OGT of prokaryotes can be accurately predicted based on the fraction of seven amino acids (IVYWREL) among all encoded amino-acid sequences in its genome. Extending this discovery, we developed a 'Metagenomic Thermometer' as a means of predicting environmental temperature based on metagenomic sequences. Temperature prediction of diverse environments using publicly available metagenomic data revealed that the Metagenomic Thermometer can predict environmental temperatures with small temperature changes and little influx of microorganisms from other environments. The accuracy of the Metagenomic Thermometer was also confirmed by a demonstration experiment using an artificial hot water canal. The Metagenomic Thermometer was also applied to human gut metagenomic samples, yielding a reasonably accurate value for human body temperature. The result further suggests that deep body temperature determines the dominant lineage of the gut community. Metagenomic Thermometer provides a new insight into temperature-driven community assembly based on amino-acid composition rather than microbial taxa.
Identifiants
pubmed: 37940329
pii: 7368459
doi: 10.1093/dnares/dsad024
pmc: PMC10660216
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Références
Appl Environ Microbiol. 1991 Apr;57(4):1094-101
pubmed: 2059034
PLoS Comput Biol. 2007 Jan 12;3(1):e5
pubmed: 17222055
Gene. 2002 Sep 4;297(1-2):51-60
pubmed: 12384285
Microbiol Mol Biol Rev. 2017 Oct 11;81(4):
pubmed: 29021219
Nat Microbiol. 2019 Jan;4(1):55-61
pubmed: 30397342
Nat Biotechnol. 2021 Jan;39(1):105-114
pubmed: 32690973
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
FEMS Microbiol Ecol. 2013 Sep;85(3):452-64
pubmed: 23607726
BMC Biol. 2019 May 30;17(1):45
pubmed: 31146755
BMJ. 2017 Dec 13;359:j5468
pubmed: 29237616
Microbiome. 2017 Nov 25;5(1):153
pubmed: 29178920
BMC Microbiol. 2018 Nov 6;18(1):177
pubmed: 30400856
Physiology (Bethesda). 2015 Mar;30(2):97-106
pubmed: 25729055
PLoS One. 2013 May 07;8(5):e62901
pubmed: 23667538
DNA Res. 2014;21(2):217-27
pubmed: 24277737
FEMS Microbiol Rev. 2001 Apr;25(2):175-243
pubmed: 11250035
Int J Obes (Lond). 2019 May;43(5):1026-1033
pubmed: 30250242
Front Bioeng Biotechnol. 2018 Dec 20;6:202
pubmed: 30619848
Nat Commun. 2023 Mar 13;14(1):1384
pubmed: 36914646
Trends Microbiol. 2007 Apr;15(4):165-71
pubmed: 17331729
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14288-93
pubmed: 21825123
PLoS Comput Biol. 2018 Jun 6;14(6):e1006143
pubmed: 29874232
PLoS One. 2013;8(1):e53350
pubmed: 23326417
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
BMC Syst Biol. 2018 Mar 19;12(Suppl 2):30
pubmed: 29560821
Microbes Environ. 2012;27(4):374-81
pubmed: 22673306
Archaea. 2013;2013:723871
pubmed: 23710131
Front Microbiol. 2013 May 06;4:67
pubmed: 23653623
J Mol Evol. 1997 Jun;44(6):632-6
pubmed: 9169555
Bioinformatics. 2019 Sep 15;35(18):3224-3231
pubmed: 30689741
J Gerontol A Biol Sci Med Sci. 2011 May;66(5):487-92
pubmed: 21324956
J Bacteriol. 1983 Jun;154(3):1222-6
pubmed: 6853443
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3578-83
pubmed: 10097079
Proc Biol Sci. 2001 Mar 7;268(1466):493-7
pubmed: 11296861
Microbiome. 2020 Sep 20;8(1):136
pubmed: 32951609
Environ Microbiol. 2021 Jul;23(7):3710-3726
pubmed: 33350070
Genome Biol Evol. 2015 Nov 26;7(12):3426-33
pubmed: 26614525
PLoS One. 2016 Oct 5;11(10):e0163962
pubmed: 27706213
Sci Rep. 2021 Aug 26;11(1):17277
pubmed: 34446773
BMC Bioinformatics. 2010 Jun 18;11:332
pubmed: 20565810
Nature. 2014 May 15;509(7500):357-60
pubmed: 24739969
Nat Commun. 2018 Jul 23;9(1):2876
pubmed: 30038374
Appl Environ Microbiol. 2009 Jul;75(13):4565-72
pubmed: 19429553
Front Microbiol. 2015 Nov 20;6:1291
pubmed: 26635759
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2951-6
pubmed: 14973185
J Gastroenterol. 2019 Jan;54(1):53-63
pubmed: 29926167
Nature. 2011 May 12;473(7346):174-80
pubmed: 21508958
Nat Med. 2019 Jun;25(6):968-976
pubmed: 31171880
Microbiologyopen. 2019 Oct;8(10):e893
pubmed: 31271524
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Gene. 2003 Oct 23;317(1-2):39-47
pubmed: 14604790
Genome Biol. 2019 Nov 28;20(1):257
pubmed: 31779668
J Bacteriol. 1982 Jan;149(1):1-5
pubmed: 7054139
Microbiome. 2018 Nov 5;6(1):198
pubmed: 30396369