Location of S-nitrosylated cysteines in protein three-dimensional structures.
S-nitrosylation
chalcogen bond
cysteine
hydrogen bond
posttranslational modification
protein data Bank
radiation damage
solvent accessibility
Journal
Proteins
ISSN: 1097-0134
Titre abrégé: Proteins
Pays: United States
ID NLM: 8700181
Informations de publication
Date de publication:
08 Nov 2023
08 Nov 2023
Historique:
revised:
13
10
2023
received:
05
05
2023
accepted:
23
10
2023
medline:
9
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
aheadofprint
Résumé
Although S-nitrosylation of cysteines is a common protein posttranslational modification, little is known about its three-dimensional structural features. This paper describes a systematic survey of the data available in the Protein Data Bank. Several interesting observations could be made. (1) As a result of radiation damage, S-nitrosylated cysteines (Snc) are frequently reduced, at least partially. (2) S-nitrosylation may be a protection against irreversible thiol oxidation; because the NO group of Snc is relatively accessible to the solvent, it may act as a cork to protect the sulfur atoms of cysteines from oxidation by molecular oxygen to sulfenic, sulfinic, and sulfonic acid; moreover, Snc are frequently found at the start or end of helices and strands and this might shield secondary structural elements from unfolding.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministero dell'Università e della Ricerca (MUR)
Organisme : University of Pavia
Informations de copyright
© 2023 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.
Références
Vihinen M. Relationship of protein flexibility to thermostability. Protein Eng. 1987;1:477-480.
Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder. Chem Rev. 2014;114:6561-6588.
Tamburrini KC, Pesce G, Milsson J, et al. Predicting protein conformational disorder and disordered binding sites. Methods Mol Biol. 2022;2449:95-147.
Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99:1129-1143.
Bauer JA, Baurova-Hlinkova V. Extracting the dynamic motion of proteins using normal mode analysis. Methods Mol Biol. 2022;2449:213-231.
Carugo O. Uses and abuses of the atomic displacement parameters in structural biology. Methods Mol Biol. 2022;2449:281-298.
Walsh C. Posttranslational Modifications of Proteins: Expanding Neture's Inventory. W. H. Freeman; 2005.
Lin H, Caroll KS. Introduction: posttranslational protein modification. Chem Rev. 2018;118:887-888.
Ramazi S, Zahiri J. Post-translational modifications in proteins: resources, tools and prediction methods. Database. 2021;1-20.
Li Z, Li S, Luo M, et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 2022;50:D471-D479.
Stamler JS, Simon DI, Osborne JA, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89:444-448.
Stamler JS, Simon DI, Jaraki O, et al. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci U S A. 1992;89:8087-8091.
Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;80(258):1898-1902.
Stamler JS, Lamas S, Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell. 2001;106:675-683.
Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: determinants of specificity and enzymatic regulation of S-Nitrosothiol-based signaling. Antioxid Redox Signal. 2019;30:1331-1351.
Zaffagnini M, Se Mia M, Morisse S, et al. Protein S-nitrosylation in photosynthetic organisms: a comprehensive overview with future perspectives. Biochim Biophys Acta. 2016;1864:952-966.
Lancaster JR. How are nitrosothiols formed de novo in vivo? Arch Biochem Biophys. 2017;617:137-144.
Seth D, Hess DT, Hausladen A, Wang L, Wang Y, Stamler JS. A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol Cell. 2018;69:451-464.
Stamler JS, Sun Q-A, Hess T. A SNO storm in skeletal muscle. Cell. 2008;133:33-35.
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 2009;15:391-404.
Greco TM, Hodara R, Parastatidis I, Schiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103:7420-7425.
Marino SM, Gladyshev VN. Structural analysis of cystein S-nitrosylation: a modified acid-base motif and the emerging role ot trans-nitrosylation. J Mol Biol. 2010;395:844-859.
Qiu W-R, Wang Q-K, Guan M-Y, Jia J-H, Xiao X. Predicting S-nitrosylation proteins and sites by fusing multiple features. Math Biosci Eng. 2021;18:9132-9147.
Zhang J, Zhao X, Sun P, Ma Z. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC. Int J Mol Sci. 2014;15:11204-11219.
Zhao Q, Ma J, Wang Y, et al. Mul-SNO: a novel prediction tool for S-Nitrosylation sites based on deep learning methods. IEEE J Biomed Heal Inform. 2022;26:2379-2387.
Li S, Yu K, Wu G, et al. pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front Cell Dev Biol. 2021;9:617366.
Hasan MM, Manavalan B, Khatun MS, Kurata H. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol Omics. 2019;15:451-458.
Li T, Song R, Yin Q, Gao M, Chen Y. Identification of S-nitrosylation sites based on multiple features combination. Sci Rep. 2019;9:3098.
Huang G, Lu L, Feng K, et al. Prediction of S-nitrosylation modification sites based on kernel sparse representation classification and mRMR algorithm. Biomed Res Int. 2014;2014:438341.
Jia C, Lin X, Wang Z. Prediction of protein S-Nitrosylation sites based on adapted Normal distribution Bi-profile Bayes and Chou's pseudo amino acid composition. Int J Mol Sci. 2014;15:10410-10423.
Carmona R, Claros M, de Alché J. Bioinformatic prediction of S-Nitrosylation sites in large protein datasets. Methods Mol Biol. 2018;1747:241-250.
Garrido Ruiz D, Angelica Sandoval-Perez A, Vikram Rangarajan A, Gunderson EL, Jacobson MP. Cysteine oxidation in proteins: structure, biophysics, and simulation. Biochemistry. 2022;61:2165-2176.
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:584-589.
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439-D444.
Chan N-L, Rogers PH, Amone A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry. 1998;37:16459-16464.
Weichsel A, Kem M, Montfort WR. Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site. Protein Sci. 2010;19:1801-1806.
Bernstein FC, Koetzle TF, Williams GJB, et al. The protein data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112:535-542.
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-242.
wwPDB Consortium. Protein data Bank: the single global archive fro 3D macromolecular structural data. Nucleic Acids Res. 2019;47:D520-D528.
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612.
Kabsch W, Sander C. Dictionary of protein secondary structure: pettern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577-2637.
Zhao Y-L, Houk KN. Thionitroxides, RSNHO: the structure of the SNO moiety in “S-Nitrosohemoglobon”, a possible NO reservoir and transporter. J Am Chem Soc. 2006;128:1422-1423.
Carugo O, Djinovic-Carugo K. When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci. 2005;30:213-219.
Garman E. “Cool” crystals: macromolecular cryocrystallography and radiation damage. Curr Opin Struct Biol. 2003;13:545-551.
Gerstel M, Deane CM, Garman EF. Identifying and quantifying radiation damage at the atomic level. J Synchrotron Radiat. 2015;22:201-212.
Shelley KL, Dixon TPE, Brooks-Bartlett JC, Garman EF. RABDAM: quantifying specific radiation damage in individual protein crystal structures. J Appl Crystallogr. 2018;51:552-559.
Schreiter ER, Rodriguez MM, Weichsel A, Montfort WR, Bonaventura J. S-nitrosylation-induced conformational change in blackfin tuna myoglobin. J Biol Chem. 2007;282:19773-19780.
Choi MS, Nakamura T, Cho SJ, et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J Neurosci. 2014;34:15123-15131.
Weichsel A, Brailey JL, Montfort WR. Buried s-nitrosocysteine revealed in crystal structures of human thioredoxin. Biochemistry. 2007;46:1219-1227.
Chen YY, Chu HM, Pan KT, et al. Cysteine S-Nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem. 2008;283:35265-35272.
Scilabra P, Terraneo G, Resnati G. The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res. 2019;52:1313-1324.
Aekeroy C, Bryce BD, Desiraju LG, et al. Definition of the chalcogen bond (IUPAC recommendations 2019). Pure Appl Chem. 2019;91:1889-1892.
Carugo O, Resnati G, Metrangolo P. Chalcogen Bonds Involving Selenium in Protein Structures. ACS Chem Biol. 2021;16:1622-1627.
Carugo O. Interplay between hydrogen and chalcogen bonds in cysteine. Proteins. 2023;91:395-399.