Aging-associated decline in vascular smooth muscle cell mechanosensation is mediated by Piezo1 channel.
aging
calcium
cellular senescence
cytoskeleton
mechanobiology
smooth muscle cells
vascular smooth muscle
Journal
Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839
Informations de publication
Date de publication:
09 Nov 2023
09 Nov 2023
Historique:
revised:
27
09
2023
received:
11
05
2023
accepted:
27
10
2023
medline:
9
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
aheadofprint
Résumé
Aging of the vasculature is associated with detrimental changes in vascular smooth muscle cell (VSMC) mechanosensitivity to extrinsic forces in their surrounding microenvironment. However, how chronological aging alters VSMCs' ability to sense and adapt to mechanical perturbations remains unexplored. Here, we show defective VSMC mechanosensation in aging measured with ultrasound tweezers-based micromechanical system, force instantaneous frequency spectrum, and transcriptome analyses. The study reveals that aged VSMCs adapt to a relatively inert mechanobiological state with altered actin cytoskeletal integrity, resulting in an impairment in their mechanosensitivity and dynamic mechanoresponse to mechanical perturbations. The aging-associated decline in mechanosensation behaviors is mediated by hyperactivity of Piezo1-dependent calcium signaling. Inhibition of Piezo1 alleviates vascular aging and partially restores the loss in dynamic contractile properties in aged cells. Altogether, our study reveals the signaling pathway underlying aging-associated aberrant mechanosensation in VSMC and identifies Piezo1 as a potential therapeutic mechanobiological target to alleviate vascular aging.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14036Subventions
Organisme : NCI NIH HHS
ID : P30CA016087
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35GM133646
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Références
Bajpai, A., Li, R., & Chen, W. (2021). The cellular mechanobiology of aging: From biology to mechanics. Annals of the New York Academy of Sciences, 1491(1), 3-24.
Beamish, J. A., He, P., Kottke-Marchant, K., & Marchant, R. E. (2010). Molecular regulation of contractile smooth muscle cell phenotype: Implications for vascular tissue engineering. Tissue Engineering Part B: Reviews, 16(5), 467-491.
Botello-Smith, W. M., Jiang, W., Zhang, H., Ozkan, A. D., Lin, Y.-C., Pham, C. N., Lacroix, J. J., & Luo, Y. (2019). A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nature Communications, 10(1), 1-10.
Brozovich, F., Nicholson, C., Degen, C., Gao, Y. Z., Aggarwal, M., & Morgan, K. (2016). Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacological Reviews, 68(2), 476-532.
Cao, G., Xuan, X., Hu, J., Zhang, R., Jin, H., & Dong, H. (2022). How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Communication and Signaling, 20(1), 1-22.
Chen, X., Wanggou, S., Bodalia, A., Zhu, M., Dong, W., Fan, J. J., Yin, W. C., Min, H. K., Hu, M., Draghici, D., Dou, W., Li, F., Coutinho, F. J., Whetstone, H., Kushida, M. M., Dirks, P. B., Song, Y., Hui, C. C., Sun, Y., … Huang, X. (2018). A feedforward mechanism mediated by mechanosensitive Ion Channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron, 100(4), 799-815.e797.
Damm, T. B., & Egli, M. (2014). Calcium's role in mechanotransduction during muscle development. Cellular Physiology and Biochemistry, 33(2), 249-272.
Davis-Dusenbery, B. N., Wu, C., & Hata, A. (2011). Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2370-2377.
Ferrucci, L., & Fabbri, E. (2018). Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews Cardiology, 15(9), 505-522.
Garoffolo, G., & Pesce, M. (2019). Mechanotransduction in the cardiovascular system: From developmental origins to homeostasis and pathology. Cell, 8(12), 1607.
Hartshorne, D. J., & Mrwa, U. (1982). Regulation of smooth muscle actomyosin. Journal of Vascular Research, 19(1), 1-18.
Hoffman, B. D., Grashoff, C., & Schwartz, M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475(7356), 316-323.
Holloszy, J. O. (2000). The biology of aging. Mayo Clinic Proceedings, 75, S3-S9.
Huang, N. E., Wu, M. L. C., Long, S. R., Shen, S. S. P., Qu, W. D., Gloersen, P., & Fan, K. L. (2003). A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 459(2037), 2317-2345.
Jiang, F., Yin, K., Wu, K., Zhang, M., Wang, S., Cheng, H., Zhou, Z., & Xiao, B. (2021). The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nature Communications, 12(1), 1-14.
Kajuluri, L. P., Singh, K., & Morgan, K. G. (2021). Vascular aging, the vascular cytoskeleton and aortic stiffness. Exploration of Medicine, 2, 186-197.
Kunieda, T., Minamino, T., Nishi, J.-i., Tateno, K., Oyama, T., Katsuno, T., Miyauchi, H., Orimo, M., Okada, S., Takamura, M., Nagai, T., Kaneko, S., & Takamura, M. (2006). Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation, 114(9), 953-960.
Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends in Immunology, 36(4), 217-228.
Lendenmann, T., Schneider, T., Dumas, J., Tarini, M., Giampietro, C., Bajpai, A., Chen, W., Gerber, J., Poulikakos, D., & Ferrari, A. (2019). Cellogram: On-the-fly traction force microscopy. Nano Letters, 19(10), 6742-6750.
Liao, J., Lu, W., Chen, Y., Duan, X., Zhang, C., Luo, X., Lin, Z., Chen, J., Liu, S., Yan, H., Chen, Y., Feng, H., Zhou, D., Chen, X., Zhang, Z., Yang, Q., Liu, X., Tang, H., Li, J., … Wang, J. (2021). Upregulation of Piezo1 (piezo type mechanosensitive ion channel component 1) enhances the intracellular free calcium in pulmonary arterial smooth muscle cells from idiopathic pulmonary arterial hypertension patients. Hypertension, 77(6), 1974-1989.
Lind, L., Sundström, J., Ärnlöv, J., & Lampa, E. (2018). Impact of aging on the strength of cardiovascular risk factors: A longitudinal study over 40 years. Journal of the American Heart Association, 7(1), e007061.
Liu, S., & Lin, Z. (2022). Vascular smooth muscle cells mechanosensitive regulators and vascular remodeling. Journal of Vascular Research, 59(2), 90-113.
Liu, Y., Mollaeian, K., & Ren, J. (2018). An image recognition-based approach to Actin cytoskeleton quantification. Electronics, 7(12), 443.
Ma, X., Dagliyan, O., Hahn, K. M., & Danuser, G. (2018). Profiling cellular morphodynamics by spatiotemporal spectrum decomposition. PLoS Computational Biology, 14(8), e1006321.
Massett, M., Bywaters, B., Gibbs, H., Trzeciakowski, J., Padgham, S., Chen, J., Rivera, G., Yeh, A. T., Milewicz, D. M., & Trache, A. (2020). Loss of smooth muscle α-Actin effects on mechanosensing and cell-matrix adhesions. Experimental Biology and Medicine, 245(4), 374-384.
Milewicz, D. M., Trybus, K. M., Guo, D. C., Sweeney, H. L., Regalado, E., Kamm, K., & Stull, J. T. (2017). Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(1), 26-34.
Mofrad, M. K., Abdul-Rahim, N., Karcher, H., Mack, P., Yap, B., & Kamm, R. (2005). Exploring the molecular basis for mechanosensation, signal transduction, and cytoskeletal remodeling. Acta Biomaterialia, 1(3), 281-293.
Nourse, J. L., & Pathak, M. M. (2017). How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Seminars in Cell & Developmental Biology, 71, 3-12.
Pan, Y., Shi, L. Z., Yoon, C. W., Preece, D., Gomez-Godinez, V., Lu, S., Carmona, C., Woo, S. H., Chien, S., Berns, M. W., Liu, L., & Wang, Y. (2022). Mechanosensor Piezo1 mediates bimodal patterns of intracellular calcium and FAK signaling. The EMBO Journal, 41(17), e111799.
Qian, W., & Chen, W. (2019). Probing single-cell mechanical allostasis using ultrasound tweezers. Cellular and Molecular Bioengineering, 12(5), 415-427.
Qian, W., Hadi, T., Silvestro, M., Ma, X., Rivera, C. F., Li, R., Zhang, Z., Qu, H., Bajpai, A., Tellaoui, R. S., Corsica, A., Zias, A. L., Garg, K., Maldonado, T., Ramkhelawon, B., & Chen, W. (2022). Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1. Nature Communications, 13(1), 1-19.
Retailleau, K., Duprat, F., Arhatte, M., Ranade, S. S., Peyronnet, R., Martins, J. R., Jodar, M., Moro, C., Offermanns, S., Feng, Y., Demolombe, S., Patel, A., & Honoré, E. (2015). Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Reports, 13(6), 1161-1171.
Seawright, J. W., Sreenivasappa, H., Gibbs, H. C., Padgham, S., Shin, S. Y., Chaponnier, C., Yeh, A. T., Trzeciakowski, J. P., Woodman, C. R., & Trache, A. (2018). Vascular smooth muscle contractile function declines with age in skeletal muscle feed arteries. Frontiers in Physiology, 9, 856.
von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson-Gilford progeria syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11(1), 1-11.
Wang, Q., Qian, W., Xu, X., Bajpai, A., Guan, K., Zhang, Z., Chen, R., Flamini, V., & Chen, W. (2019). Energy-mediated machinery drives cellular mechanical allostasis. Advanced Materials, 31(35), 1900453.
Weng, S., Shao, Y., Chen, W., & Fu, J. (2016). Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. Nature Materials, 15(9), 961-967.
Wu, C.-M., Zheng, L., Wang, Q., & Hu, Y.-W. (2021). The emerging role of cell senescence in atherosclerosis. Clinical Chemistry and Laboratory Medicine (CCLM), 59(1), 27-38.
Yamashiro, Y., & Yanagisawa, H. (2020). The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clinical Science, 134(17), 2399-2418.
Yang, M. T., Fu, J., Wang, Y.-K., Desai, R. A., & Chen, C. S. (2011). Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nature Protocols, 6(2), 187-213.
Yap, C., Mieremet, A., de Vries, C. J., Micha, D., & de Waard, V. (2021). Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4). Arteriosclerosis, Thrombosis, and Vascular Biology, 41(11), 2693-2707.
Yin, Q., Zang, G., Li, N., Sun, C., & Du, R. (2022). Agonist-induced Piezo1 activation promote mitochondrial-dependent apoptosis in vascular smooth muscle cells. BMC Cardiovascular Disorders, 22(1), 1-12.