Simulation of double resonant excitation of ions in an asymmetric linear ion trap mass analyzer.
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
15 Dec 2023
15 Dec 2023
Historique:
revised:
06
08
2023
received:
11
07
2023
accepted:
08
08
2023
medline:
9
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
ppublish
Résumé
Improving the analytical performance of linear ion traps (LITs) is crucial for the advancement of high-performance LIT mass spectrometers. In this study, a double resonant excitation method was employed in an asymmetric LIT to achieve high ion unidirectional ejection efficiency and enhanced mass resolution. The asymmetric trapping field was generated by stretching one x electrode with a distance α. The double resonant excitation was achieved by applying an alternating voltage out of phase and a supplementary alternating voltage in phase to the x and y electrode pairs of the LIT, respectively. Numerical simulations of ion trajectories were performed to validate the effectiveness of this method. The mass resolution of the asymmetric LIT with double resonant excitation could be improved to ~3800, which was over two times compared to that with only dipolar resonant excitation, while both reached ~90% in ion unidirectional ejection efficiency. By employing the double resonant excitation method, the mass resolution could be improved significantly in the asymmetric LIT, while maintaining a considerably high ion unidirectional ejection efficiency. This method might provide a general solution for enhancing ion detection efficiency and mass resolution of LIT mass spectrometers.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e9625Subventions
Organisme : National Natural Science Foundation of China
ID : 61971297
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Drexler DM, Feyen JH, Sanders M. Mass spectrometry techniques for qualitative and quantitative analysis of biomarkers. Drug Discov Today Technol. 2004;1(1):17-23. doi:10.1016/j.ddtec.2004.08.010
Huang G, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG. Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst. 2010;135(4):705-711. doi:10.1039/b923427f
Soparawalla S, Tadjimukhamedov FK, Wiley JS, Ouyang Z, Cooks RG. In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer. Analyst. 2011;136(21):4392-4396. doi:10.1039/c1an15493a
Hosseini SE, Saeidian H, Amozadeh A, Naseri MT, Babri M. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(24):2585-2593. doi:10.1002/rcm.7757
Saeidian H, Babri M, Mirjafary Z, et al. Fragmentation mechanisms in mass spectrometry of Chemical Weapons Convention related spiroalkylphosphonates and alkyldioxaphosphinane oxides. Int J Mass Spectrom. 2014;369:59-70. doi:10.1016/j.ijms.2014.06.003
Lebedev AT. Environmental mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif). 2013;6(1):163-189. doi:10.1146/annurev-anchem-062012-092604
Kumano S, Sugiyama M, Yamada M, et al. Development of a portable mass spectrometer characterized by discontinuous sample gas introduction, a low-pressure dielectric barrier discharge ionization source, and a vacuumed headspace technique. Anal Chem. 2013;85(10):5033-5039. doi:10.1021/ac4002904
Moore DS. Instrumentation for trace detection of high explosives. Rev Sci Instrum. 2004;75(8):2499-2512. doi:10.1063/1.1771493
Jiang T, Zhang HJ, Tang Y, et al. A “brick mass spectrometer” driven by a sinusoidal frequency scanning technique. Anal Chem. 2017;89(10):5578-5584. doi:10.1021/acs.analchem.7b00719
Schwartz JC, Senko MW, Syka JEP. A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom. 2002;13(6):659-669. doi:10.1016/s1044-0305(02)00384-7
Ouyang Z, Wu GX, Song YS, Li HY, Plass WR, Cooks RG. Rectilinear ion trap: Concepts, calculations, and analytical performance of a new mass analyzer. Anal Chem. 2004;76(16):4595-4605. doi:10.1021/ac049420n
Li X, Zhang X, Yao R, He Y, Zhu Y, Qian J. Design and performance evaluation of a linear ion trap mass analyzer featuring half round rod electrodes. J Am Soc Mass Spectrom. 2015;26(5):734-740. doi:10.1007/s13361-015-1085-2
Snyder DT, Cooks RG. Single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. J Am Soc Mass Spectrom. 2017;28(9):1929-1938. doi:10.1007/s13361-017-1707-y
Snyder DT, Szalwinski LJ, Cooks RG. Simultaneous and sequential MS/MS scan combinations and permutations in a linear quadrupole ion trap. Anal Chem. 2017;89(20):11053-11060. doi:10.1021/acs.analchem.7b03064
Hager JW. A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom. 2002;16(6):512-526. doi:10.1002/rcm.607
Stafford G. Ion trap mass spectrometry: A personal perspective. J Am Soc Mass Spectrom. 2002;13(6):589-596. doi:10.1016/s1044-0305(02)00385-9
Sekiguchi H, Matsushita K, Yamashiro S, et al. On-site determination of nerve and mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxicol. 2006;24(1):17-22. doi:10.1007/s11419-006-0004-4
Wu HY, Zhang LP, Zhang ZY, et al. Simulation of unidirectional ion ejection in an asymmetric half-round rod electrode linear ion trap mass analyzer. J Am Soc Mass Spectrom. 2018;29(10):2096-2104. doi:10.1007/s13361-018-2014-y
Zhang Y, Wu H, Rujiao Y, et al. Simulation of unidirectional ion ejection in linear ion traps with asymmetric radiofrequency voltage. Rapid Commun Mass Spectrom. 2020;34(9):e8731. doi:10.1002/rcm.8731
Remes PM, Syka JEP, Kovtoun VV, Schwartz JC. Insight into the resonance ejection process during mass analysis through simulations for improved linear quadrupole ion trap mass spectrometer performance. Int J Mass Spectrom. 2014;370:44-57. doi:10.1016/j.ijms.2014.06.015
Schwartz JC, Syka JEP, Jardine I. High-resolution on a quadrupole ion trap mass-spectrometer. J Am Soc Mass Spectrom. 1991;2(3):198-204. doi:10.1016/1044-0305(91)80044-8
Snyder DT, Peng WP, Cooks RG. Resonance methods in quadrupole ion traps. Chem Phys Lett. 2017;668:69-89. doi:10.1016/j.cplett.2016.11.011
Fulford J, March R. A new mode of operation for the three-dimensional quadrupole ion store (QUISTOR): The selective ion reactor. Int J Mass Spectrom Ion Phys. 1978;26(2):155-162. doi:10.1016/0020-7381(78)80018-7
Fulford JE, Nhu-Hoa D, Hughes RJ, March RE, Bonner RF, Wong GJ. Radio-frequency mass selective excitation and resonant ejection of ions in a three-dimensional quadrupole ion trap. J Vac Sci Technol A. 1980;17(4):829-835. doi:10.1116/1.570570
March RE. An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom. 1997;32(4):351-369. doi:10.1002/(sici)1096-9888(199704)32:4%3C351::Aid-jms512%3E3.0.Co;2-y
Langmuir DB, Langmuir RV, Haywood S, Wuerker RF. Containment device. US Patent No. 3,065,640: 1962.
Splendore M, Marquette E, Oppenheimer J, Huston C, Wells G. A new ion ejection method employing an asymmetric trapping field to improve the mass scanning performance of an electrodynamic ion trap. Int J Mass Spectrom. 1999;190-191:129-143. doi:10.1016/s1387-3806(98)14291-4
Jiang T, Xu Q, Zhang HJ, Li DY, Xu W. Improving the performances of a “brick mass spectrometer” by quadrupole enhanced dipolar resonance ejection from the linear ion trap. Anal Chem. 2018;90(19):11671-11679. doi:10.1021/acs.analchem.8b03332
Franzen J. Simulation study of an ion cage with superimposed multipole fields. Int J Mass Spectrom. 1991;106:63-78. doi:10.1016/0168-1176(91)85012-b
Douglas DJ, Frank AJ, Mao DM. Linear ion traps in mass spectrometry. Mass Spectrom Rev. 2005;24(1):1-29. doi:10.1002/mas.20004
March R, Hughes R, Roberts AD. Quadrupole Storage Mass Spectrometry. Wiley; 1991.
Collings BA, Douglas DJ. Observation of higher order quadrupole excitation frequencies in a linear ion trap. J Am Soc Mass Spectrom. 2000;11(11):1016-1022. doi:10.1016/s1044-0305(00)00171-9
Alfred RL, Londry FA, March RE. Resonance excitation of ions stored in a quadrupole ion trap. Part IV. Theory of quadrupolar excitation. Int J Mass Spectrom Ion Phys. 1993;125(2-3):171-185. doi:10.1016/0168-1176(93)80040-l
Collings B, Sudakov M, Londry F. Resonance shifts in the excitation of the n = 0, K= 1 to 6 quadrupolar resonances for ions confined in a linear ion trap. J Am Soc Mass Spectrom. 2002;13(5):577-586. doi:10.1016/s1044-0305(02)00361-6
Franzen J. The non-linear ion-trap. Part 5. Nature of nonlinear resonances and resonant ion ejection. Int J Mass Spectrom. 1994;130(1-2):15-40. doi:10.1016/0168-1176(93)03907-4
Zheng OY, Badman ER, Cooks RG. Characterization of a serial array of miniature cylindrical ion trap mass analyzers. Rapid Commun Mass Spectrom. 1999;13(24):2444-2449. doi:10.1002/(SICI)1097-0231(19991230)13:24%3C2444::AID-RCM810%3E3.0.CO;2-F
Sudakov MY, Apatskaya MV, Vitukhin VV, Trubitsyn AA. A new linear ion trap with simple electrodes. J Anal Chem. 2012;67(14):1057-1065. doi:10.1134/s1061934812140092
Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Ther Rev. 1914;3(2):69-91. doi:10.1103/PhysRev.3.69
Franzen J. The non-linear ion trap. Part 4. Mass selective instability scan with multipole superposition. Int J Mass Spectrom Ion Phys. 1993;125(2-3):165-170. doi:10.1016/0168-1176(93)80039-h
Wang Y, Franzen J. The non-linear ion trap. Part 3. Multipole components in three types of practical ion trap. Int J Mass Spectrom Ion Phys. 1994;132(3):155-172. doi:10.1016/0168-1176(93)03939-j
Douglas DJ, Konenkov NV. Mass selectivity of dipolar resonant excitation in a linear quadrupole ion trap. Rapid Commun Mass Spectrom. 2014;28(5):430-438. doi:10.1002/rcm.6795