[Role of cellular metabolism in the control of chronic viral hepatitis].
Rôle du métabolisme cellulaire dans le contrôle des hépatites virales chroniques.
Journal
Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
medline:
10
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
ppublish
Résumé
Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense. Rôle du métabolisme cellulaire dans le contrôle des hépatites virales chroniques. Les virus des hépatites modifient le métabolisme cellulaire des hépatocytes en interagissant avec des enzymes spécifiques, telles que la glucokinase. Les changements métaboliques induits par les virus peuvent avoir un impact direct sur la réponse antivirale innée. Les interactions complexes entre les composants viraux, l’immunité innée et le métabolisme des hépatocytes expliquent pourquoi les infections hépatiques chroniques conduisent à l’inflammation du foie, évoluant vers la cirrhose, la fibrose et le carcinome hépatocellulaire. Des régulateurs du métabolisme pourraient être utilisés dans des thérapies innovantes pour priver les virus de métabolites clés et induire une défense antivirale.
Autres résumés
Type: Publisher
(fre)
Rôle du métabolisme cellulaire dans le contrôle des hépatites virales chroniques.
Identifiants
pubmed: 37943136
doi: 10.1051/medsci/2023125
pii: msc230111
doi:
Substances chimiques
Antiviral Agents
0
Types de publication
English Abstract
Journal Article
Langues
fre
Sous-ensembles de citation
IM
Pagination
754-762Subventions
Organisme : ANRS
ID : ECTZ132153
Organisme : ANR
ID : 22-CE15-0001
Informations de copyright
© 2023 médecine/sciences – Inserm.
Références
Nicoletti A, Ainora ME, Cintoni M, et al. Dynamics of liver stiffness predicts complications in patients with HCV related cirrhosis treated with direct-acting antivirals. Digestive and Liver Disease 2023; may 2 :S1590–8658(23)00579–0.
Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016 ; 64 : S84–S101.
Costante F, Stella L, Santopaolo F, et al. Molecular and Clinical Features of Hepatocellular Carcinoma in Patients with HBV-HDV Infection. J Hepatocell Carcinoma 2023; 10 : 713–24.
Diamond DL, Syder AJ, Jacobs JMet al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 2010 ; 6 : e1000719.
Perrin-Cocon L, Kundlacz C, Jacquemin C, et al. Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes. Int J Mol Sci 2022; 23 : 919.
Jung G-S, Jeon J-H, Choi Y-K, et al. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication. Sci Rep 2016 ; 6 : 30846.
Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004 ; 126 : 840–848.
Hsieh M-J, Lan K-P, Liu H-Y, et al. Hepatitis C virus E2 protein involve in insulin resistance through an impairment of Akt/PKB and GSK3β signaling in hepatocytes. BMC Gastroenterol 2012 ; 12 : 74.
Wu Y-H, Yang Y, Chen C-H, et al. Aerobic glycolysis supports hepatitis B virus protein synthesis through interaction between viral surface antigen and pyruvate kinase isoform M2. PLoS Pathog 2021; 17 : e1008866.
Xie Q, Fan F, Wei W, et al. Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells. Sci Rep 2017 ; 7 : 41089.
Blanchard E, Roingeard P. The Hepatitis C Virus-Induced Membranous Web in Liver Tissue. Cells 2018 ; 7 : 191.
Andre P, Komurian-Pradel F, Deforges S, et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002 ; 76 : 6919–6928.
Bartenschlager R, Penin F, Lohmann V, et al. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011 ; 19 : 95–103.
Scholtes C, Ramiere C, Rainteau D, et al. High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 2012 ; 56 : 39–48.
Piver E, Boyer A, Gaillard J, et al. Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture. Gut 2017 ; 66 : 1487–1495.
Yang W, Hood BL, Chadwick SL, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008 ; 48 : 1396–1403.
Hajjou M, Norel R, Carver R, et al. cDNA microarray analysis of HBV transgenic mouse liver identifies genes in lipid biosynthetic and growth control pathways affected by HBV. J Med Virol 2005 ; 77 : 57–65.
Wu Y-L, Peng X-E, Zhu Y-B, et al. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J Virol 2016 ; 90 : 1729–1740.
Wang M-D, Wu H, Huang S, et al. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget 2016 ; 7 : 6711–6726.
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 2014 ; 15 : 323–332.
Perrin-Cocon L, Aublin-Gex A, Sestito SE, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci rep 2017 ; 7 : 40791.
Perrin-Cocon L, Aublin-Gex A, Diaz O, et al. Toll-like Receptor 4-Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1alpha and Increased Hexokinase II Expression. J Immunol 2018 ; 201 : 1510–1521.
Zhang Z, Trippler M, Real CI, et al. Hepatitis B Virus Particles Activate Toll-Like Receptor 2 Signaling Initially Upon Infection of Primary Human Hepatocytes. Hepatology 2020; 72 : 829–44.
Li Y-J, Zhu P, Liang Y, et al. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells. World J Gastroenterol 2013 ; 19 : 2262–2269.
Chang S, Dolganiuc A, Szabo G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 2007 ; 82 : 479–487.
Agaugue S, Perrin-Cocon L, andre P, et al. Hepatitis C lipo-Viro-particle from chronically infected patients interferes with TLR4 signaling in dendritic cell. PloS one 2007; 2 : e330.
Zhang E, Ma Z, Li Q, et al. TLR2 Stimulation Increases Cellular Metabolism in CD8+ T Cells and Thereby Enhances CD8+ T Cell Activation, Function, and antiviral Activity. J Immunol 2019 ; 203 : 2872–2886.
Israelow B, Narbus CM, Sourisseau M, et al. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology 2014 ; 60 : 1170–1179.
Zhang Z, Filzmayer C, Ni Y, et al. Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes. J Hepatol 2018 ; 69 : 25–35.
Fekete T, Sütö MI, Bencze D, et al. Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation. Front Immunol 2018 ; 9 : 3070.
Zhang W, Wang G, Xu ZG, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell 2019 ; 178 : 176–89.e15.
Zhou L, He R, Fang P, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Commun 2021; 12 : 98.
Wei C, Ni C, Song T, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 2010 ; 185 : 1158–1168.
Li K, Foy E, Ferreon JC, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 2005 ; 102 : 2992–2997.
Liu Y, Li J, Chen J, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 2015 ; 89 : 2287–2300.
Ding Q, Cao X, Lu J, et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J Hepatol 2013 ; 59 : 52–58.
Pan Q, de Ruiter PE, Metselaar HJ, et al. Mycophenolic acid augments interferon-stimulated gene expression and inhibits hepatitis C Virus infection in vitro and in vivo. Hepatology 2012 ; 55 : 1673–1683.
Hoffmann H-H, Kunz A, Simon VA, et al. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci U S A 2011 ; 108 : 5777–5782.
Wang Y, Wang W, Xu L, et al. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. antimicrob Agents Chemother 2016 ; 60 : 2834–2848.
Ruan J, Sun S, Cheng X, et al. Mitomycin, 5-fluorouracil, leflunomide, and mycophenolic acid directly promote hepatitis B virus replication and expression in vitro. Virol J 2020; 17 : 89.
Hoppe-Seyler K, Sauer P, Lohrey C, et al. The inhibitors of nucleotide biosynthesis leflunomide, FK778, and mycophenolic acid activate hepatitis B virus replication in vitro. Hepatology 2012 ; 56 : 9–16.
Gong ZJ, De Meyer S, Clarysse C, et al. Mycophenolic acid, an immunosuppressive agent, inhibits HBV replication in vitro. J Viral Hepat 1999 ; 6 : 229–236.
Ben-Ari Z, Zemel R, Tur-Kaspa R. The addition of mycophenolate mofetil for suppressing hepatitis B virus replication in liver recipients who developed lamivudine resistance–no beneficial effect. Transplantation 2001 ; 71 : 154–156.
Verrier ER, Weiss A, Bach C, et al. Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut 2020; 69 : 158–67.
Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012 ; 1 : e00049.
Mouzannar K, Fusil F, Lacombe B, et al. Farnesoid X receptor-alpha is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo. FASEB J 2019 ; 33 : 2472–2483.
Erken R, andre P, Roy E, et al. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study. J Viral Hepat 2021; 28 : 1690–8.
Legrand A-F, Lucifora J, Lacombe B, et al. Farnesoid X receptor alpha ligands inhibit HDV in vitro replication and virion infectivity. Hepatol Commun 2023; 7 : e0078.
Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol 2022; 548 : 111618.
Song M, Sun Y, Tian J, et al. Silencing Retinoid X Receptor Alpha Expression Enhances Early-Stage Hepatitis B Virus Infection In Cell Cultures. J Virol 2018 ; 92 : e01771–e01717.