Hypomorphic variants of SEL1L-HRD1 ER-associated degradation are associated with neurodevelopmental disorders.
Cell Biology
Genetic variation
Neurological disorders
Protein misfolding
Journal
The Journal of clinical investigation
ISSN: 1558-8238
Titre abrégé: J Clin Invest
Pays: United States
ID NLM: 7802877
Informations de publication
Date de publication:
09 Nov 2023
09 Nov 2023
Historique:
medline:
9
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
aheadofprint
Résumé
Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD); however, its importance in humans remains unclear as no disease variant has been identified. Here we report the identification of three bi-allelic missense variants of SEL1L and HRD1 (or SYVN1) in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provide new insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establish the importance of SEL1L-HRD1 ERAD in humans.
Identifiants
pubmed: 37943610
pii: 170054
doi: 10.1172/JCI170054
doi:
pii:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM