Maggot debridement therapy stimulates wound healing by altering macrophage activation.

diabetic foot ulcer macrophages maggot debridement therapy wound healing

Journal

International wound journal
ISSN: 1742-481X
Titre abrégé: Int Wound J
Pays: England
ID NLM: 101230907

Informations de publication

Date de publication:
09 Nov 2023
Historique:
revised: 18 10 2023
received: 02 08 2023
accepted: 22 10 2023
medline: 10 11 2023
pubmed: 10 11 2023
entrez: 9 11 2023
Statut: aheadofprint

Résumé

The purpose of this study is to determine the impact of maggot debridement therapy (MDT) on macrophages during the healing process of diabetic foot ulcers (DFU). The activation phenotype of macrophages during wound healing following MDT was evaluated using double staining immunohistochemistry (IHC). In addition, markers associated with macrophage activation were discovered using immunoblotting and real-time polymerase chain reaction (PCR). During the process of diabetic wound healing following MDT, the presence and over-expression of M2 macrophages were observed, while the under-expression of M1 macrophages was noted. In addition, the activation markers of macrophages exhibited a correlation with the indicated Th1/Th2 cytokines. MDT interventions have the potential to modulate macrophage activity, thereby aiding in the healing of diabetic foot wounds.

Identifiants

pubmed: 37944931
doi: 10.1111/iwj.14477
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

Références

Toma C, Suzuki T. Evaluation of intracellular trafficking in macrophages. Methods Mol Biol. 2020;2134:199-206. doi:10.1007/978-1-0716-0459-5_18
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23-35. doi:10.1038/nri978 PubMed PMID: 12511873.
Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370. doi:10.3389/fimmu.2015.00370 PubMed PMID: 26257737; PubMed Central PMCID: PMCPMC4510422.
Sherman RA, Hall MJ, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol. 2000;45:55-81. doi:10.1146/annurev.ento.45.1.55 PubMed PMID: 10761570.
Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D. Biosurgery supports granulation and debridement in chronic wounds-clinical data and remittance spectroscopy measurement. Int J Dermatol. 2002;41(10):635-639. PubMed PMID: 12390183.
van der Plas MJ, van der Does AM, Baldry M, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9(4):507-514. doi:10.1016/j.micinf.2007.01.008 PubMed PMID: 17350304.
Bexfield A, Bond AE, Morgan C, et al. Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. Br J Dermatol. 2010;162(3):554-562. doi:10.1111/j.1365-2133.2009.09530.x PubMed PMID: 19799603.
Horobin AJ, Shakesheff KM, Pritchard DI. Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair Regen. 2005;13(4):422-433. doi:10.1111/j.1067-1927.2005.130410.x PubMed PMID: 16008732.
Dumville JC, Worthy G, Bland JM, et al. Larval therapy for leg ulcers (VenUS II): randomised controlled trial. BMJ. 2009;338:b773. doi:10.1136/bmj.b773 PubMed PMID: 19304577; PubMed Central PMCID: PMC2659858.
Opletalova K, Blaizot X, Mourgeon B, et al. Maggot therapy for wound debridement: a randomized multicenter trial. Arch Dermatol. 2012;148(4):432-438. doi:10.1001/archdermatol.2011.1895 PubMed PMID: 22184720.
Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975;78(1):71-100. Epub 1975/01/01. PubMed PMID: 1109560; PubMed Central PMCID: PMCPMC1915032.
Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181-1194. Epub 2015/01/20. doi:10.1007/s12035-014-9070-5 PubMed PMID: 25598354.
Gu XY, Shen SE, Huang CF, et al. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Res Clin Pract. 2013;102(1):53-59. Epub 2013/09/10. doi:10.1016/j.diabres.2013.08.004 PubMed PMID: 24011427.
Finley PJ, DeClue CE, Sell SA, DeBartolo JM, Shornick LP. Diabetic wounds exhibit decreased Ym1 and arginase expression with increased expression of IL-17 and IL-20. Adv Wound Care (New Rochelle). 2016;5(11):486-494. Epub 2016/11/22. doi:10.1089/wound.2015.0676 PubMed PMID: 27867753; PubMed Central PMCID: PMCPMC5105346.
Miao M, Niu Y, Xie T, Yuan B, Qing C, Lu S. Diabetes-impaired wound healing and altered macrophage activation: a possible pathophysiologic correlation. Wound Repair Regen. 2012;20(2):203-213. Epub 2012/03/03. doi:10.1111/j.1524-475X.2012.00772.x PubMed PMID: 22380690.
Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol. 2012;19(10):1222-1236. Epub 2012/10/30. doi:10.1016/j.chembiol.2012.08.019 PubMed PMID: 23102217; PubMed Central PMCID: PMCPMC5722193.
Mounier R, Theret M, Arnold L, et al. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18(2):251-264. Epub 2013/08/13. doi:10.1016/j.cmet.2013.06.017 PubMed PMID: 23931756.
Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181(12):8633-8641. Epub 2008/12/04. doi:10.4049/jimmunol.181.12.8633 PubMed PMID: 19050283; PubMed Central PMCID: PMCPMC2756051.
Jhun BS, Jin Q, Oh YT, et al. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun. 2004;318(2):372-380. Epub 2004/05/04. doi:10.1016/j.bbrc.2004.04.035 PubMed PMID: 15120611.
Naka T, Fujimoto M, Tsutsui H, Yoshimura A. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol. 2005;87:61-122. Epub 2005/08/17. doi:10.1016/S0065-2776(05)87003-8 PubMed PMID: 16102572.
Xu X, Su Y, Wu K, Pan F, Wang A. DOCK2 contributes to endotoxemia-induced acute lung injury in mice by activating proinflammatory macrophages. Biochem Pharmacol. 2021;184:114399. doi:10.1016/j.bcp.2020.114399

Auteurs

Xin-Juan Sun (XJ)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Jin-An Chen (JA)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Gai Li (G)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Lei Wang (L)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Tian-Yuan Wang (TY)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Ai-Ping Wang (AP)

Diabetic Foot Center, Junxie Hospital, Nanjing, China.

Classifications MeSH