Full-Color Generation via Phototunable Mono Ink for Fast and Elaborate Printings.

inks nanostructures polymerizations polymers structural colors

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
09 Nov 2023
Historique:
revised: 23 10 2023
received: 19 07 2023
pubmed: 10 11 2023
medline: 10 11 2023
entrez: 9 11 2023
Statut: aheadofprint

Résumé

Unlike pigment-based colors, which are determined by their molecular structure, diverse colors can be expressed by a regular arrangement of nanomaterials. However, existing techniques for constructing such nanostructures have struggled to combine high precision and speed, resulting in a narrow gamut, and prolonged color fabrication time. Here, this work reports a phototunable mono ink that can generate a wide range of colors by controlling regularly arranged nanostructure. Core-shell growth controlled by polymerization time precisely regulates the distance between arranged particles at a nanometer-scale, enabling the generation of various colors. Moreover, the wide and thin arrangement induces constrained out-of-plane growth, thus facilitating the intricate color generation at the desired location via photopolymerization. Upon terminating polymerization by oxygen gas, the generated colors are readily fixed and kept stable. Utilizing programmed ultraviolet illumination, large-scale and high-resolution (≈1 µm) full-color printings are demonstrated at high speed (100 mm

Identifiants

pubmed: 37945054
doi: 10.1002/adma.202307165
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2307165

Subventions

Organisme : National Research Foundation of Korea
Organisme : Korean Government
ID : 2018M3A7B4089670
Organisme : Korean Government
ID : 2021R1A2C2092737
Organisme : Ministry of Science, ICT and Future Planning
ID : NRF-2022M3C1A3081211

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

a) P. A. M. Dirac, Proc. R. Soc. London, Ser. A 1927, 114, 243;
b) H. Kuhn, J. Chem. Phys. 1949, 17, 1198.
a) D. L. MacAdam, J. Opt. Soc. Am. 1938, 28, 466;
b) P. A. Gilbert, W. Haeberli, Am. J. Phys. 2007, 75, 313.
a) R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147;
b) H. Oh, D. G. Seo, T. Y. Yun, C. Y. Kim, H. C. Moon, ACS Appl. Mater. Interfaces 2017, 9, 7658.
a) N. M.-W. Wu, M. Ng, V. W.-W. Yam, Nat. Commun. 2022, 13, 33;
b) G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev. 2000, 100, 1741.
a) K. Kalayci, H. Frisch, V. X. Truong, C. Barner-Kowollik, Nat. Commun. 2020, 11, 4193;
b) T. Hong, Y. K. Choi, T. Lim, K. Seo, S. M. Jeong, S. Ju, Adv. Mater. Technol. 2021, 6, 2001058.
a) D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, Nature 2009, 459, 68;
b) A. C. Overholts, W. Granados Razo, M. J. Robb, Nat. Chem. 2023, 15, 332.
a) J. Teyssier, S. V. Saenko, D. Van Der Marel, M. C. Milinkovitch, Nat. Commun. 2015, 6, 6368
b) D. Gur, B. A. Palmer, B. Leshem, D. Oron, P. Fratzl, S. Weiner, L. Addadi, Angew. Chem., Int. Ed. 2015, 54, 12426;
c) D. G. DeMartini, D. V. Krogstad, D. E. Morse, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 2552;
d) S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15712.
F. Fu, Z. Chen, Z. Zhao, H. Wang, L. Shang, Z. Gu, Y. Zhao, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5900.
C. Lavanya, D. Rajesh, C. Sunil, S. Sarita, Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 189.
a) K. Chen, Q. Fu, S. Ye, J. Ge, Adv. Funct. Mater. 2017, 27, 1702825;
b) H. Kim, J. Ge, J. Kim, S.-e. Choi, H. Lee, H. Lee, W. Park, Y. Yin, S. Kwon, Nat. Photonics 2009, 3, 534;
c) J. Xue, X. Yin, L. Xue, C. Zhang, S. Dong, L. Yang, Y. Fang, Y. Li, L. Li, J. Cui, Nat. Commun. 2022, 13, 7823;
d) D. Y. Kim, S. Choi, H. Cho, J. Y. Sun, Adv. Mater. 2019, 31, 1804080.
A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, L. J. Fetters, Adv. Mater. 2000, 12, 812.
a) K. Li, T. Li, T. Zhang, H. Li, A. Li, Z. Li, X. Lai, X. Hou, Y. Wang, L. Shi, Sci. Adv. 2021, 7, eabh1992;
b) L. Qin, X. Liu, K. He, G. Yu, H. Yuan, M. Xu, F. Li, Y. Yu, Nat. Commun. 2021, 12, 699;
c) L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, Z. Gu, ACS Nano 2014, 8, 11094;
d) W. Li, Y. Wang, M. Li, L. P. Garbarini, F. G. Omenetto, Adv. Mater. 2019, 31, 1901036.
a) J. B. Kim, C. Chae, S. H. Han, S. Y. Lee, S.-H. Kim, Sci. Adv. 2021, 7, eabj8780;
b) B. B. Patel, D. J. Walsh, D. H. Kim, J. Kwok, B. Lee, D. Guironnet, Y. Diao, Sci. Adv. 2020, 6, eaaz7202.
a) J. Xue, Z.-K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, X.-H. Wang, Nat. Commun. 2015, 6, 8906;
b) X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, A. Kristensen, Nat. Nanotechnol. 2016, 11, 325;
c) X. Zhu, W. Yan, U. Levy, N. A. Mortensen, A. Kristensen, Sci. Adv. 2017, 3, e1602487.
a) S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, Q. Song, ACS Nano 2017, 11, 4445;
b) X. Duan, S. Kamin, N. Liu, Nat. Commun. 2017, 8, 14606;
c) T. Xu, E. C. Walter, A. Agrawal, C. Bohn, J. Velmurugan, W. Zhu, H. J. Lezec, A. A. Talin, Nat. Commun. 2016, 7, 10479.
G. Mayonado, S. M. Mian, V. Robbiano, F. Cacialli, BFY Proc. 2015, 60.
R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, Soft Matter 2010, 6, 784.
T. Rosi, M. Malgieri, P. Onorato, S. Oss, Eur. J. Phys. 2016, 37, 065301.
A. B. Plaza-Puche, L. C. Salerno, F. Versaci, D. Romero, J. L. Alio, Eur. J. Ophthalmol. 2019, 29, 585.
a) J. Y. Sun, C. Keplinger, G. M. Whitesides, Z. Suo, Adv. Mater. 2014, 26, 7608;
b) J. Kim, G. Zhang, M. Shi, Z. Suo, Science 2021, 374, 212.
a) C. Yang, Z. Suo, Nat. Rev. Mater. 2018, 3, 125;
b) M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X. Zhu, X. He, Nature 2021, 590, 594;
c) J. Ma, Y. Lin, Y.-W. Kim, Y. Ko, J. Kim, K. H. Oh, J.-Y. Sun, C. B. Gorman, M. A. Voinov, A. I. Smirnov, ACS Macro Lett. 2019, 8, 1522.
a) H. Yuk, C. E. Varela, C. S. Nabzdyk, X. Mao, R. F. Padera, E. T. Roche, X. Zhao, Nature 2019, 575, 169;
b) D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, Science 2011, 333, 838;
c) S.-K. Kang, R. K. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Nature 2016, 530, 71.
P. Han, D. M. Bartels, J. Phys. Chem. 1996, 100, 5597.

Auteurs

Yun Hyeok Lee (YH)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Won Jun Song (WJ)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Jae-Man Park (JM)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Gimin Sung (G)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Min-Gyu Lee (MG)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Miji Kim (M)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Sungeun Park (S)

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.

Ju Sang Lee (JS)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Miyoung Kim (M)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Wook Sung Kim (WS)

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.

Jeong-Yun Sun (JY)

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea.

Classifications MeSH