Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
09 Nov 2023
Historique:
received: 19 02 2023
accepted: 04 10 2023
medline: 10 11 2023
pubmed: 10 11 2023
entrez: 9 11 2023
Statut: aheadofprint

Résumé

Anxiety disorders are the most prevalent mental disorders. However, the genetic etiology of anxiety disorders remains largely unknown. Here we conducted a genome-wide meta-analysis on anxiety disorders by including 74,973 (28,392 proxy) cases and 400,243 (146,771 proxy) controls. We identified 14 risk loci, including 10 new associations near CNTNAP5, MAP2, RAB9BP1, BTN1A1, PRR16, PCLO, PTPRD, FARP1, CDH2 and RAB27B. Functional genomics and fine-mapping pinpointed the potential causal variants, and expression quantitative trait loci analysis revealed the potential target genes regulated by the risk variants. Integrative analyses, including transcriptome-wide association study, proteome-wide association study and colocalization analyses, prioritized potential causal genes (including CTNND1 and RAB27B). Evidence from multiple analyses revealed possibly causal genes, including RAB27B, BTN3A2, PCLO and CTNND1. Finally, we showed that Ctnnd1 knockdown affected dendritic spine density and resulted in anxiety-like behaviours in mice, revealing the potential role of CTNND1 in anxiety disorders. Our study identified new risk loci, potential causal variants and genes for anxiety disorders, providing insights into the genetic architecture of anxiety disorders and potential therapeutic targets.

Identifiants

pubmed: 37945807
doi: 10.1038/s41562-023-01746-y
pii: 10.1038/s41562-023-01746-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : U2102205,31970561
Organisme : National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
ID : 202101AS070055

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).
pubmed: 15939837 doi: 10.1001/archpsyc.62.6.593
Kessler, R. C. et al. Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Arch. Gen. Psychiatry 69, 372–380 (2012).
pubmed: 22147808 doi: 10.1001/archgenpsychiatry.2011.160
Huang, Y. et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry 6, 211–224 (2019).
pubmed: 30792114 doi: 10.1016/S2215-0366(18)30511-X
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).
doi: 10.1016/S0140-6736(18)32279-7
Craske, M. G. et al. Anxiety disorders. Nat. Rev. Dis. Primers 3, 17024 (2017).
pubmed: 28470168 doi: 10.1038/nrdp.2017.24
Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).
pubmed: 23783199 pmcid: 4276319 doi: 10.1038/nrn3524
Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).
pubmed: 19469026 doi: 10.1038/nrn2651
Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).
pubmed: 25592533 pmcid: 4565157 doi: 10.1038/nature14188
Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).
pubmed: 26536109 pmcid: 4780260 doi: 10.1038/nature15698
Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).
pubmed: 21389985 pmcid: 3154022 doi: 10.1038/nature09820
Liu, W. Z. et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 11, 2221 (2020).
pubmed: 32376858 pmcid: 7203160 doi: 10.1038/s41467-020-15920-7
Hettema, J. M., Neale, M. C. & Kendler, K. S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 158, 1568–1578 (2001).
pubmed: 11578982 doi: 10.1176/appi.ajp.158.10.1568
Shimada-Sugimoto, M., Otowa, T. & Hettema, J. M. Genetics of anxiety disorders: genetic epidemiological and molecular studies in humans. Psychiatry Clin. Neurosci. 69, 388–401 (2015).
pubmed: 25762210 doi: 10.1111/pcn.12291
Kendler, K. S. Twin studies of psychiatric illness: an update. Arch. Gen. Psychiatry 58, 1005–1014 (2001).
pubmed: 11695946 doi: 10.1001/archpsyc.58.11.1005
Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).
pubmed: 31740837 pmcid: 6885121 doi: 10.1038/s41588-019-0512-x
Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).
pubmed: 34045744 pmcid: 8404304 doi: 10.1038/s41593-021-00860-2
Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).
pubmed: 26754954 pmcid: 4940340 doi: 10.1038/mp.2015.197
Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).
pubmed: 31748690 doi: 10.1038/s41380-019-0559-1
Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from approximately 200,000 participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020).
pubmed: 31906708 pmcid: 7869502 doi: 10.1176/appi.ajp.2019.19030256
Meier, S. M. et al. Genetic variants associated with anxiety and stress-related disorders: a genome-wide association study and mouse-model study. JAMA Psychiatry 76, 924–932 (2019).
pubmed: 31116379 pmcid: 6537792 doi: 10.1001/jamapsychiatry.2019.1119
Ruscio, A. M. et al. Cross-sectional comparison of the epidemiology of DSM-5 generalized anxiety disorder across the globe. JAMA Psychiatry 74, 465–475 (2017).
pubmed: 28297020 pmcid: 5594751 doi: 10.1001/jamapsychiatry.2017.0056
Schiele, M. A. & Domschke, K. [Separation anxiety disorder]. Nervenarzt 92, 426–432 (2021).
pubmed: 33319254 doi: 10.1007/s00115-020-01037-1
de Jonge, P. et al. Cross-national epidemiology of panic disorder and panic attacks in the world mental health surveys. Depress. Anxiety 33, 1155–1177 (2016).
pubmed: 27775828 pmcid: 5143159 doi: 10.1002/da.22572
Stein, D. J. et al. The cross-national epidemiology of social anxiety disorder: data from the World Mental Health Survey Initiative. BMC Med. 15, 143 (2017).
pubmed: 28756776 pmcid: 5535284 doi: 10.1186/s12916-017-0889-2
Wardenaar, K. J. et al. The cross-national epidemiology of specific phobia in the World Mental Health Surveys. Psychol. Med. 47, 1744–1760 (2017).
pubmed: 28222820 pmcid: 5674525 doi: 10.1017/S0033291717000174
Roest, A. M. et al. A comparison of DSM-5 and DSM-IV agoraphobia in the World Mental Health Surveys. Depress. Anxiety 36, 499–510 (2019).
pubmed: 30726581 pmcid: 6548607 doi: 10.1002/da.22885
Strohle, A., Gensichen, J. & Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int. 155, 611–620 (2018).
pubmed: 30282583
Penninx, B. W., Pine, D. S., Holmes, E. A. & Reif, A. Anxiety disorders. Lancet 397, 914–927 (2021).
pubmed: 33581801 pmcid: 9248771 doi: 10.1016/S0140-6736(21)00359-7
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R. & Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 617–627 (2005).
pubmed: 15939839 pmcid: 2847357 doi: 10.1001/archpsyc.62.6.617
Lamers, F. et al. Comorbidity patterns of anxiety and depressive disorders in a large cohort study: the Netherlands Study of Depression and Anxiety (NESDA). J. Clin. Psychiatry 72, 341–348 (2011).
pubmed: 21294994 doi: 10.4088/JCP.10m06176blu
Goisman, R. M., Goldenberg, I., Vasile, R. G. & Keller, M. B. Comorbidity of anxiety disorders in a multicenter anxiety study. Compr. Psychiatry 36, 303–311 (1995).
pubmed: 7554875 doi: 10.1016/S0010-440X(95)90076-4
Bighelli, I. et al. Antidepressants versus placebo for panic disorder in adults. Cochrane Database Syst. Rev. 4, CD010676 (2018).
pubmed: 29620793
Curtiss, J., Andrews, L., Davis, M., Smits, J. & Hofmann, S. G. A meta-analysis of pharmacotherapy for social anxiety disorder: an examination of efficacy, moderators, and mediators. Expert Opin. Pharmacother. 18, 243–251 (2017).
pubmed: 28110555 doi: 10.1080/14656566.2017.1285907
Gomez, A. F., Barthel, A. L. & Hofmann, S. G. Comparing the efficacy of benzodiazepines and serotonergic anti-depressants for adults with generalized anxiety disorder: a meta-analytic review. Expert Opin. Pharmacother. 19, 883–894 (2018).
pubmed: 29806492 pmcid: 6097846 doi: 10.1080/14656566.2018.1472767
Ravindran, L. N. & Stein, M. B. The pharmacologic treatment of anxiety disorders: a review of progress. J. Clin. Psychiatry 71, 839–854 (2010).
pubmed: 20667290 doi: 10.4088/JCP.10r06218blu
Bandelow, B. et al. Guidelines for the pharmacological treatment of anxiety disorders, obsessive-compulsive disorder and posttraumatic stress disorder in primary care. Int. J. Psychiatry Clin. Pract. 16, 77–84 (2012).
pubmed: 22540422 doi: 10.3109/13651501.2012.667114
Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V. & Greicius, M. D. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–1372 (2009).
pubmed: 19996041 doi: 10.1001/archgenpsychiatry.2009.104
Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).
pubmed: 17898336 pmcid: 3318959 doi: 10.1176/appi.ajp.2007.07030504
Fonzo, G. A. et al. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br. J. Psychiatry 206, 206–215 (2015).
pubmed: 25573399 pmcid: 4345308 doi: 10.1192/bjp.bp.114.149880
Kraus, J. et al. Amygdala reactivity and connectivity during social and non-social aversive stimulation in social anxiety disorder. Psychiatry Res. Neuroimaging 280, 56–61 (2018).
pubmed: 30165271 doi: 10.1016/j.pscychresns.2018.08.012
Roberson-Nay, R., Eaves, L. J., Hettema, J. M., Kendler, K. S. & Silberg, J. L. Childhood separation anxiety disorder and adult onset panic attacks share a common genetic diathesis. Depress. Anxiety 29, 320–327 (2012).
pubmed: 22461084 pmcid: 4542089 doi: 10.1002/da.21931
Hettema, J. M., Prescott, C. A., Myers, J. M., Neale, M. C. & Kendler, K. S. The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch. Gen. Psychiatry 62, 182–189 (2005).
pubmed: 15699295 doi: 10.1001/archpsyc.62.2.182
Smoller, J. W., Gardner-Schuster, E. & Covino, J. The genetic basis of panic and phobic anxiety disorders. Am. J. Med. Genet. C 148C, 118–126 (2008).
doi: 10.1002/ajmg.c.30174
Tambs, K. et al. Structure of genetic and environmental risk factors for dimensional representations of DSM-IV anxiety disorders. Br. J. Psychiatry 195, 301–307 (2009).
pubmed: 19794197 pmcid: 3010208 doi: 10.1192/bjp.bp.108.059485
Chantarujikapong, S. I. et al. A twin study of generalized anxiety disorder symptoms, panic disorder symptoms and post-traumatic stress disorder in men. Psychiatry Res. 103, 133–145 (2001).
pubmed: 11549402 doi: 10.1016/S0165-1781(01)00285-2
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
pubmed: 36653562 pmcid: 9849126 doi: 10.1038/s41586-022-05473-8
Lloyd-Jones, L. R., Robinson, M. R., Yang, J. & Visscher, P. M. Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio. Genetics 208, 1397–1408 (2018).
pubmed: 29429966 pmcid: 5887138 doi: 10.1534/genetics.117.300360
Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nat. Hum. Behav. 5, 1432–1442 (2021).
pubmed: 33859377 doi: 10.1038/s41562-021-01094-9
Huo, Y., Li, S., Liu, J., Li, X. & Luo, X. J. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat. Commun. 10, 670 (2019).
pubmed: 30737407 pmcid: 6368563 doi: 10.1038/s41467-019-08666-4
Li, S. et al. Regulatory mechanisms of major depressive disorder risk variants. Mol. Psychiatry 25, 1926–1945 (2020).
pubmed: 32214206 doi: 10.1038/s41380-020-0715-7
Whitington, T. et al. Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat. Genet. 48, 387–397 (2016).
pubmed: 26950096 doi: 10.1038/ng.3523
Yifan, L. et al. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression. Preprint at medRxiv https://doi.org/10.1101/2023.02.24.23286411 (2023).
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
pubmed: 26773131 pmcid: 4866522 doi: 10.1093/bioinformatics/btw018
Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
pubmed: 25357204 pmcid: 4214605 doi: 10.1371/journal.pgen.1004722
Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7, e32332 (2018).
pubmed: 29561261 pmcid: 5898914 doi: 10.7554/eLife.32332
Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science https://doi.org/10.1126/science.aat8127 (2019).
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
pmcid: 5776756 doi: 10.1038/nature24277
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).
pubmed: 33510477 pmcid: 8130821 doi: 10.1038/s41588-020-00773-z
Dall’Aglio, L., Lewis, C. M. & Pain, O. Delineating the genetic component of gene expression in major depression. Biol. Psychiatry 89, 627–636 (2021).
pubmed: 33279206 pmcid: 7886308 doi: 10.1016/j.biopsych.2020.09.010
Liu, J., Li, X. & Luo, X. J. Proteome-wide association study provides insights into the genetic component of protein abundance in psychiatric disorders. Biol. Psychiatry 90, 781–789 (2021).
pubmed: 34454697 doi: 10.1016/j.biopsych.2021.06.022
Wingo, T. S. et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 24, 810–817 (2021).
pubmed: 33846625 pmcid: 8530461 doi: 10.1038/s41593-021-00832-6
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Freshour, S. L. et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2020).
pmcid: 7778926 doi: 10.1093/nar/gkaa1084
Klein, E. & Uhde, T. W. Controlled study of verapamil for treatment of panic disorder. Am. J. Psychiatry 145, 431–434 (1988).
pubmed: 2450479 doi: 10.1176/ajp.145.4.431
Mucha, M. et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl Acad. Sci. USA 108, 18436–18441 (2011).
pubmed: 21969573 pmcid: 3215032 doi: 10.1073/pnas.1107936108
Moreno-Martinez, S., Tendilla-Beltran, H., Sandoval, V., Flores, G. & Terron, J. A. Chronic restraint stress induces anxiety-like behavior and remodeling of dendritic spines in the central nucleus of the amygdala. Behav. Brain Res. 416, 113523 (2022).
pubmed: 34390801 doi: 10.1016/j.bbr.2021.113523
Leuner, B. & Shors, T. J. Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251, 108–119 (2013).
pubmed: 22522470 doi: 10.1016/j.neuroscience.2012.04.021
Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry 67, 448–457 (2010).
pubmed: 20439826 pmcid: 2926797 doi: 10.1001/archgenpsychiatry.2010.48
Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell 141, 117–128 (2010).
pubmed: 20371349 doi: 10.1016/j.cell.2010.01.017
Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2, 637–644 (2000).
pubmed: 10980705 doi: 10.1038/35023588
Park, J. I. et al. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell 8, 843–854 (2005).
pubmed: 15935774 doi: 10.1016/j.devcel.2005.04.010
Gritsenko, P. G. et al. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat. Cell Biol. 22, 97–107 (2020).
pubmed: 31907411 pmcid: 6952556 doi: 10.1038/s41556-019-0443-x
Uribe-Arias, A. et al. p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer’s disease. J. Neurochem. 138, 624–639 (2016).
pubmed: 27273428 pmcid: 4980216 doi: 10.1111/jnc.13697
Potvin, O., Hudon, C., Dion, M., Grenier, S. & Preville, M. Anxiety disorders, depressive episodes and cognitive impairment no dementia in community-dwelling older men and women. Int. J. Geriatr. Psychiatry 26, 1080–1088 (2011).
pubmed: 21905102 doi: 10.1002/gps.2647
Mantella, R. C. et al. Cognitive impairment in late-life generalized anxiety disorder. Am. J. Geriatr. Psychiatry 15, 673–679 (2007).
pubmed: 17426260 doi: 10.1097/JGP.0b013e31803111f2
Yang, Y. et al. Cognitive impairment in generalized anxiety disorder revealed by event-related potential N270. Neuropsychiatr. Dis. Treat. 11, 1405–1411 (2015).
pubmed: 26082637 pmcid: 4461089
Dissanayaka, N. N. W. et al. Anxiety is associated with cognitive impairment in newly-diagnosed Parkinson’s disease. Parkinsonism Relat. Disord. 36, 63–68 (2017).
pubmed: 28108263 pmcid: 5338650 doi: 10.1016/j.parkreldis.2017.01.001
Volel, B. A., Petelin, D. S., Akhapkin, R. V. & Malyutina, A. A. Cognitive impairment in anxiety disorders. Neurol. Neuropsychiatry Psychosom. 10, 78–82 (2018).
doi: 10.14412/2074-2711-2018-1-78-82
Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J. & Lonnqvist, J. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. 106, 1–27 (2008).
pubmed: 17707915 doi: 10.1016/j.jad.2007.06.006
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379 doi: 10.1038/nature13595
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475 pmcid: 5934326 doi: 10.1038/s41588-018-0090-3
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
pubmed: 30718901 pmcid: 6522363 doi: 10.1038/s41593-018-0326-7
Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).
pubmed: 34002096 pmcid: 8192451 doi: 10.1038/s41588-021-00857-4
Haley, G. E., Eghlidi, D. H., Kohama, S. G., Urbanski, H. F. & Raber, J. Association of microtubule associated protein-2, synaptophysin, and apolipoprotein E mRNA and protein levels with cognition and anxiety levels in aged female rhesus macaques. Behav. Brain Res. 232, 1–6 (2012).
pubmed: 22475553 pmcid: 3361595 doi: 10.1016/j.bbr.2012.03.032
Ward, J. et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 7, 1264 (2017).
pubmed: 29187730 pmcid: 5802589 doi: 10.1038/s41398-017-0012-7
Fraporti, T. T. et al. Synergistic effects between ADORA2A and DRD2 genes on anxiety disorders in children with ADHD. Prog. Neuropsychopharmacol. Biol. Psychiatry 93, 214–220 (2019).
pubmed: 30946941 doi: 10.1016/j.pnpbp.2019.03.021
Joe, K. H. et al. Genetic association of DRD2 polymorphisms with anxiety scores among alcohol-dependent patients. Biochem. Biophys. Res. Commun. 371, 591–595 (2008).
pubmed: 18307984 doi: 10.1016/j.bbrc.2008.02.076
Nguyen, D., Alushaj, E., Erb, S. & Ito, R. Dissociative effects of dorsomedial striatum D1 and D2 receptor antagonism in the regulation of anxiety and learned approach-avoidance conflict decision-making. Neuropharmacology 146, 222–230 (2019).
pubmed: 30508508 doi: 10.1016/j.neuropharm.2018.11.040
Berry, A. S. et al. Dopaminergic mechanisms underlying normal variation in trait anxiety. J. Neurosci. 39, 2735–2744 (2019).
pubmed: 30737306 pmcid: 6445999 doi: 10.1523/JNEUROSCI.2382-18.2019
Laszlo, K. et al. The role of D2 dopamine receptors in oxytocin induced place preference and anxiolytic effect. Horm. Behav. 124, 104777 (2020).
pubmed: 32439347 doi: 10.1016/j.yhbeh.2020.104777
de Oliveira, A. R. et al. Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol. Learn. Mem. 95, 37–45 (2011).
pubmed: 20955808 doi: 10.1016/j.nlm.2010.10.005
Peng, B. et al. Corticosterone attenuates reward-seeking behavior and increases anxiety via D2 receptor signaling in ventral tegmental area dopamine neurons. J. Neurosci. 41, 1566–1581 (2021).
pubmed: 33372063 pmcid: 7896015 doi: 10.1523/JNEUROSCI.2533-20.2020
Comer, J. S., Mojtabai, R. & Olfson, M. National trends in the antipsychotic treatment of psychiatric outpatients with anxiety disorders. Am. J. Psychiatry 168, 1057–1065 (2011).
pubmed: 21799067 doi: 10.1176/appi.ajp.2011.11010087
Maher, A. R. et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and meta-analysis. JAMA 306, 1359–1369 (2011).
pubmed: 21954480 doi: 10.1001/jama.2011.1360
Nelson, J. C. & Papakostas, G. I. Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am. J. Psychiatry 166, 980–991 (2009).
pubmed: 19687129 doi: 10.1176/appi.ajp.2009.09030312
Tomita, H. et al. The protein tyrosine phosphatase receptor delta regulates developmental neurogenesis. Cell Rep. 30, 215–228 e5 (2020).
pubmed: 31914388 doi: 10.1016/j.celrep.2019.11.033
Ortiz, B. et al. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl Acad. Sci. USA 111, 8149–8154 (2014).
pubmed: 24843164 pmcid: 4050622 doi: 10.1073/pnas.1401952111
Li, F., Zhang, W., Wang, M. & Jia, P. IL1RAP regulated by PRPRD promotes gliomas progression via inducing neuronal synapse development and neuron differentiation in vitro. Pathol. Res. Pract. 216, 153141 (2020).
pubmed: 32829106 doi: 10.1016/j.prp.2020.153141
Bienvenu, T. et al. De novo deleterious variants that may alter the dopaminergic reward pathway are associated with anorexia nervosa. Eat. Weight Disord. 25, 1643–1650 (2020).
pubmed: 31664672 doi: 10.1007/s40519-019-00802-9
Burton, C. L. et al. Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder. Transl. Psychiatry 11, 91 (2021).
pubmed: 33531474 pmcid: 7870035 doi: 10.1038/s41398-020-01121-9
Liu, Q. R. et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc. Natl Acad. Sci. USA 102, 11864–11869 (2005).
pubmed: 16091475 pmcid: 1183486 doi: 10.1073/pnas.0500329102
Kim, H. N. et al. Genome-wide association study of the five-factor model of personality in young Korean women. J. Hum. Genet. 58, 667–674 (2013).
pubmed: 23903073 doi: 10.1038/jhg.2013.75
Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907 (2017).
pubmed: 29029846 pmcid: 5755468 doi: 10.1016/S1474-4422(17)30327-7
Uhl, G. R. & Martinez, M. J. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. N. Y. Acad. Sci. 1451, 112–129 (2019).
pubmed: 30648269 pmcid: 6629525 doi: 10.1111/nyas.14002
Uhl, G. R. et al. Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proc. Natl Acad. Sci. USA 115, 11597–11602 (2018).
pubmed: 30348770 pmcid: 6233130 doi: 10.1073/pnas.1720446115
Pascual, R., Valencia, M. & Bustamante, C. Antenatal betamethasone produces protracted changes in anxiety-like behaviors and in the expression of microtubule-associated protein 2, brain-derived neurotrophic factor and the tyrosine kinase B receptor in the rat cerebellar cortex. Int. J. Dev. Neurosci. 43, 78–85 (2015).
pubmed: 25889225 doi: 10.1016/j.ijdevneu.2015.04.005
Grima, N. A. et al. Efficacy of melatonin for sleep disturbance following traumatic brain injury: a randomised controlled trial. BMC Med. 16, 8 (2018).
pubmed: 29347988 pmcid: 5774131 doi: 10.1186/s12916-017-0995-1
Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).
pubmed: 14610055 pmcid: 2173649 doi: 10.1083/jcb.200307111
Elia, L. P., Yamamoto, M., Zang, K. & Reichardt, L. F. p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43–56 (2006).
pubmed: 16815331 pmcid: 2587166 doi: 10.1016/j.neuron.2006.05.018
Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).
pubmed: 26404714 pmcid: 7575249 doi: 10.1038/nn.4101
McCall, J. G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).
pubmed: 26212712 pmcid: 4529361 doi: 10.1016/j.neuron.2015.07.002
Zhang, X. et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat. Commun. 12, 5740 (2021).
pubmed: 34593806 pmcid: 8484468 doi: 10.1038/s41467-021-25956-y
Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018).
pubmed: 29632383 pmcid: 5942893 doi: 10.1038/s41588-018-0092-1
Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).
pubmed: 32424349 pmcid: 7276299 doi: 10.1038/s41588-020-0625-2
Bandelow, B. & Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 17, 327–335 (2015).
pubmed: 26487813 pmcid: 4610617 doi: 10.31887/DCNS.2015.17.3/bbandelow
Kessler, R. C. et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol. Psichiatr. Soc. 18, 23–33 (2009).
pubmed: 19378696 pmcid: 3039289 doi: 10.1017/S1121189X00001421
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
pubmed: 28686856 pmcid: 5501872 doi: 10.1016/j.ajhg.2017.06.005
Kroenke, K., Spitzer, R. L., Williams, J. B. & Lowe, B. The Patient Health Questionnaire somatic, anxiety, and depressive symptom scales: a systematic review. Gen. Hosp. Psychiatry 32, 345–359 (2010).
pubmed: 20633738 doi: 10.1016/j.genhosppsych.2010.03.006
Zhou, W. et al. Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
pubmed: 30104761 pmcid: 6119127 doi: 10.1038/s41588-018-0184-y
Ruth, M. P., Mitchell, H. G. & David, P. On combining data from genome-wide association studies to discover disease-associated SNPs. Stat. Sci. 24, 547–560 (2009).
Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).
pubmed: 23657481 doi: 10.1038/nrg3472
Begum, F., Ghosh, D., Tseng, G. C. & Feingold, E. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 40, 3777–3784 (2012).
pubmed: 22241776 pmcid: 3351172 doi: 10.1093/nar/gkr1255
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmuller, G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 31, 1334–1336 (2015).
pubmed: 25431330 doi: 10.1093/bioinformatics/btu779
Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).
pubmed: 27668389 pmcid: 5083142 doi: 10.1038/nn.4399
Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203–216 e8 (2019).
pubmed: 31174959 pmcid: 7000204 doi: 10.1016/j.neuron.2019.05.013
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917 pmcid: 4767558 doi: 10.1038/ng.3506
Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).
pubmed: 30926968 pmcid: 6777347 doi: 10.1038/s41588-019-0385-z
Li, X. et al. Transcriptome-wide association study identifies new susceptibility genes and pathways for depression. Transl. Psychiatry 11, 306 (2021).
pubmed: 34021117 pmcid: 8140098 doi: 10.1038/s41398-021-01411-w
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Srivastava, D. P., Woolfrey, K. M. & Penzes, P. Analysis of dendritic spine morphology in cultured CNS neurons. J. Vis. Exp. 13, e2794 (2011).
Li, Y., Li, S., Liu, J., Huo, Y. & Luo, X. J. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol. Psychiatry 26, 7102–7104 (2021).
pubmed: 34376824 doi: 10.1038/s41380-021-01261-4
Li, Y. et al. Regulatory variant rs2535629 in ITIH3 intron confers schizophrenia risk by regulating CTCF binding and SFMBT1 expression. Adv. Sci. (Weinh.) 9, e2104786 (2022).
pubmed: 34978167
Li, S. et al. Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression. Brain 145, 770–786 (2022).
pubmed: 34581804 doi: 10.1093/brain/awab357
Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R. & Wearne, S. L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE 3, e1997 (2008).
pubmed: 18431482 pmcid: 2292261 doi: 10.1371/journal.pone.0001997
Wearne, S. L. et al. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136, 661–680 (2005).
pubmed: 16344143 doi: 10.1016/j.neuroscience.2005.05.053
Dumitriu, D., Rodriguez, A. & Morrison, J. H. High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat. Protoc. 6, 1391–1411 (2011).
pubmed: 21886104 pmcid: 3566769 doi: 10.1038/nprot.2011.389
Zagrebelsky, M. et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 25, 9989–9999 (2005).
pubmed: 16251447 pmcid: 6725571 doi: 10.1523/JNEUROSCI.2492-05.2005
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Paxinos, G. F. & Franklin, K. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2003).
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2089 (2012).
GraphPad Prism version 8.0.0 for Windows, GraphPad Software, https://www.graphpad.com (2018).
Dang, X. Codes for ‘Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders’. Zenodo https://doi.org/10.5281/zenodo.8162792 (2023).

Auteurs

Wenqiang Li (W)

Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.

Rui Chen (R)

Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Laipeng Feng (L)

Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.

Xinglun Dang (X)

Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.

Jiewei Liu (J)

Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Tengfei Chen (T)

Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.

Jinfeng Yang (J)

Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Xi Su (X)

Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.

Luxian Lv (L)

Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.

Tao Li (T)

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Zhijun Zhang (Z)

Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China.
Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Xiong-Jian Luo (XJ)

Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China. luoxiongjian@seu.edu.cn.
Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China. luoxiongjian@seu.edu.cn.

Classifications MeSH