Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
21
08
2022
accepted:
15
09
2023
pubmed:
10
11
2023
medline:
10
11
2023
entrez:
9
11
2023
Statut:
ppublish
Résumé
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Identifiants
pubmed: 37945903
doi: 10.1038/s41588-023-01534-4
pii: 10.1038/s41588-023-01534-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2065-2074Subventions
Organisme : NCI NIH HHS
ID : U01 CA257328
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA261339
Pays : United States
Investigateurs
Yuji Yamanashi
(Y)
Yoichi Furukawa
(Y)
Takayuki Morisaki
(T)
Yoshinori Murakami
(Y)
Kaori Muto
(K)
Akiko Nagai
(A)
Wataru Obara
(W)
Ken Yamaji
(K)
Kazuhisa Takahashi
(K)
Satoshi Asai
(S)
Yasuo Takahashi
(Y)
Takao Suzuki
(T)
Nobuaki Sinozaki
(N)
Hiroki Yamaguchi
(H)
Shiro Minami
(S)
Shigeo Murayama
(S)
Kozo Yoshimori
(K)
Satoshi Nagayama
(S)
Daisuke Obata
(D)
Masahiko Higashiyama
(M)
Akihide Masumoto
(A)
Yukihiro Koretsune
(Y)
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593
doi: 10.3322/caac.21492
Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).
pubmed: 33398198
pmcid: 8148035
doi: 10.1038/s41588-020-00748-0
Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).
pubmed: 29892016
pmcid: 6568012
doi: 10.1038/s41588-018-0142-8
Dadaev, T. et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9, 2256 (2018).
pubmed: 29892050
pmcid: 5995836
doi: 10.1038/s41467-018-04109-8
Conti, D. V. et al. Two novel susceptibility loci for prostate cancer in men of African ancestry. J. Natl Cancer Inst. 109, djx084 (2017).
pubmed: 29117387
pmcid: 5448553
doi: 10.1093/jnci/djx084
Wang, M. et al. Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer. Nat. Commun. 6, 8469 (2015).
pubmed: 26443449
doi: 10.1038/ncomms9469
Hoffmann, T. J. et al. A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences. Cancer Discov. 5, 878–891 (2015).
pubmed: 26034056
pmcid: 4527942
doi: 10.1158/2159-8290.CD-15-0315
Al Olama, A. A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109 (2014).
pubmed: 25217961
pmcid: 4383163
doi: 10.1038/ng.3094
Eeles, R. A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 391e1–392e1 (2013). 385-91.
doi: 10.1038/ng.2560
Gudmundsson, J. et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat. Genet. 44, 1326–1329 (2012).
pubmed: 23104005
pmcid: 3562711
doi: 10.1038/ng.2437
Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42, 751–754 (2010).
pubmed: 20676098
doi: 10.1038/ng.635
Gudmundsson, J. et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 40, 281–283 (2008).
pubmed: 18264098
pmcid: 3598012
doi: 10.1038/ng.89
Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).
pubmed: 16682969
doi: 10.1038/ng1808
Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).
pubmed: 31217584
pmcid: 6785182
doi: 10.1038/s41586-019-1310-4
Newcombe, P. J., Conti, D. V. & Richardson, S. JAM: a scalable Bayesian framework for joint analysis of marginal SNP effects. Genet. Epidemiol. 40, 188–201 (2016).
pubmed: 27027514
pmcid: 4817278
doi: 10.1002/gepi.21953
Chen, F. et al. Evidence of novel susceptibility variants for prostate cancer and a multiancestry polygenic risk score associated with aggressive disease in men of African ancestry. Eur. Urol. 84, 13–21 (2023).
pubmed: 36872133
doi: 10.1016/j.eururo.2023.01.022
Barfeld, S. J., East, P., Zuber, V. & Mills, I. G. Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genomics 7, 513 (2014).
pubmed: 25551447
pmcid: 4351903
doi: 10.1186/s12920-014-0074-9
Halvorsen, O. J. et al. Increased expression of SIM2-s protein is a novel marker of aggressive prostate cancer. Clin. Cancer Res. 13, 892–897 (2007).
pubmed: 17289882
doi: 10.1158/1078-0432.CCR-06-1207
Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).
pubmed: 11518967
doi: 10.1038/35090585
Linn, D. E. et al. Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J. Biol. Chem. 287, 22959–22968 (2012).
pubmed: 22584579
pmcid: 3391098
doi: 10.1074/jbc.M111.338350
Wang, J. et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 29, 2477–2487 (2010).
pubmed: 20140016
pmcid: 2861731
doi: 10.1038/onc.2010.10
Sun, X. et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat. Genet. 37, 407–412 (2005).
pubmed: 15750593
doi: 10.1038/ng1528
Chandler, J. D., Williams, E. D., Slavin, J. L., Best, J. D. & Rogers, S. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97, 2035–2042 (2003).
pubmed: 12673735
doi: 10.1002/cncr.11293
White, M. A. et al. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr. Relat. Cancer 25, 453–469 (2018).
pubmed: 29431615
pmcid: 5831527
doi: 10.1530/ERC-17-0051
Mi, Y. et al. Down-regulation of Barx2 predicts poor survival in colorectal cancer. Biochem. Biophys. Res. Commun. 478, 67–73 (2016).
pubmed: 27453340
doi: 10.1016/j.bbrc.2016.07.091
Zhang, J. et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 54, 593–602 (2022).
pubmed: 35501419
pmcid: 9236177
doi: 10.1038/s41588-022-01051-w
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917
pmcid: 4767558
doi: 10.1038/ng.3506
Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).
pubmed: 26258848
pmcid: 4552594
doi: 10.1038/ng.3367
The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Thibodeau, S. N. et al. Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set. Nat. Commun. 6, 8653 (2015).
pubmed: 26611117
doi: 10.1038/ncomms9653
The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488
pmcid: 6697541
doi: 10.1038/s41586-018-0175-2
Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun. 9, 4079 (2018).
pubmed: 30287866
pmcid: 6172280
doi: 10.1038/s41467-018-06302-1
Liu, D. et al. A transcriptome-wide association study identifies novel candidate susceptibility genes for prostate cancer risk. Int J. Cancer 150, 80–90 (2022).
pubmed: 34520569
doi: 10.1002/ijc.33808
Amin Al Olama, A. et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Hum. Mol. Genet. 24, 5589–5602 (2015).
pubmed: 26025378
pmcid: 4572072
doi: 10.1093/hmg/ddv203
Pencina, M. J., D’Agostino, R. B. Sr. & Steyerberg, E. W. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat. Med 30, 11–21 (2011).
pubmed: 21204120
doi: 10.1002/sim.4085
Chen, F. et al. Validation of a multi-ancestry polygenic risk score and age-specific risks of prostate cancer: a meta-analysis within diverse populations. eLife 11, e78304 (2022).
pubmed: 35801699
pmcid: 9322982
doi: 10.7554/eLife.78304
Darst, B. F. et al. Evaluating approaches for constructing polygenic risk scores for prostate cancer in men of African and European ancestry. Am. J. Hum. Genet 110, 1200–1206 (2023).
pubmed: 37311464
doi: 10.1016/j.ajhg.2023.05.010
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
pubmed: 19543373
pmcid: 2689936
doi: 10.1371/journal.pgen.1000529
Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
pubmed: 27694958
pmcid: 5096458
doi: 10.1038/ng.3679
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
pubmed: 36653562
pmcid: 9849126
doi: 10.1038/s41586-022-05473-8
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245
doi: 10.1038/nature15393
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819
pmcid: 7875770
doi: 10.1038/s41586-021-03205-y
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
doi: 10.1038/s41586-018-0579-z
de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).
pubmed: 18852200
pmcid: 2782358
doi: 10.1093/hmg/ddn288
Zawistowski, M. et al. The Michigan Genomics Initiative: a biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3, 100257 (2023).
pubmed: 36819667
pmcid: 9932985
doi: 10.1016/j.xgen.2023.100257
Karlson, E. W., Boutin, N. T., Hoffnagle, A. G. & Allen, N. L. Building the Partners HealthCare Biobank at Partners Personalized Medicine: informed consent, return of research results, recruitment lessons and operational considerations. J. Pers. Med. 6, 2 (2016).
pubmed: 26784234
pmcid: 4810381
doi: 10.3390/jpm6010002
Plym, A. et al. Evaluation of a multiethnic polygenic risk score model for prostate cancer. J. Natl Cancer Inst. 114, 771–774 (2022).
pubmed: 33792693
doi: 10.1093/jnci/djab058
Andrews, C. et al. Development, evaluation, and implementation of a pan-African cancer research network: men of African descent and carcinoma of the prostate. J. Glob. Oncol. 4, 1–14 (2018).
pubmed: 30260756
Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).
pubmed: 24518929
doi: 10.1093/ije/dyt268
Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).
pubmed: 35513724
pmcid: 9117455
doi: 10.1038/s41588-022-01054-7
Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
pubmed: 30992449
pmcid: 6467998
doi: 10.1038/s41467-019-09718-5
The International HapMap 3 Consortium Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
pmcid: 3173859
doi: 10.1038/nature09298
1000 Genomes Project Consortiumet al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Kachuri, L. et al. Genetically adjusted PSA levels for prostate cancer screening. Nat. Med. 29, 1412–1423 (2023).
pubmed: 37264206
pmcid: 10287565
doi: 10.1038/s41591-023-02277-9
Amin Al Olama, A. et al. Risk analysis of prostate cancer in PRACTICAL, a multinational consortium, using 25 known prostate cancer susceptibility loci. Cancer Epidemiol. Biomark. Prev. 24, 1121–1129 (2015).
doi: 10.1158/1055-9965.EPI-14-0317
Antoniou, A. C. et al. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res. 70, 9742–9754 (2010).
pubmed: 21118973
pmcid: 2999830
doi: 10.1158/0008-5472.CAN-10-1907
Antoniou, A. C. et al. Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet. Epidemiol. 21, 1–18 (2001).
pubmed: 11443730
doi: 10.1002/gepi.1014
Kuchenbaecker, K. B. et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J. Natl Cancer Inst. 109, djw302 (2017).
pubmed: 28376175
pmcid: 5408990
doi: 10.1093/jnci/djw302
Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence - SEER Research Plus Data, 18 Registries, Nov 2020 Sub (2000–2018) - Linked To County Attributes - Total U.S., 1969–2019 Counties National Cancer Institute https://seer.cancer.gov/statistics-network/explorer/ (2021).
Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Mortality - All COD, Aggregated With State, Total U.S. (1990–2019) <Katrina/Rita Population Adjustment> National Cancer Institute https://seer.cancer.gov/statistics-network/explorer/ (2021).
Chang, X. & Wang, K. wANNOVAR: annotating genetic variants for personal genomes via the web. J. Med. Genet. 49, 433–436 (2012).
pubmed: 22717648
doi: 10.1136/jmedgenet-2012-100918
Mei, S. et al. Cistrome Data Browser: a data portal for ChIP–seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 45, D658–d662 (2017).
pubmed: 27789702
doi: 10.1093/nar/gkw983
Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).
pubmed: 19468054
pmcid: 2705236
doi: 10.1093/bioinformatics/btp328
Gong, J. et al. PancanQTL: systematic identification of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids Res. 46, D971–D976 (2018).
pubmed: 29036324
doi: 10.1093/nar/gkx861
Tian, J. et al. CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res. 47, D909–D916 (2018).
pmcid: 6324030
doi: 10.1093/nar/gky954
Bergstrom, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).
pubmed: 32193295
pmcid: 7115999
doi: 10.1126/science.aay5012
Rozowsky, J. et al. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 186, 1493–1511 e40 (2023).
pubmed: 37001506
doi: 10.1016/j.cell.2023.02.018
Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6, e1000770 (2010).
pubmed: 20463871
pmcid: 2865505
doi: 10.1371/journal.pcbi.1000770
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Ser. B 82, 1273–1300 (2020).
doi: 10.1111/rssb.12388