Spatial and single-cell profiling of the metabolome, transcriptome and epigenome of the aging mouse liver.


Journal

Nature aging
ISSN: 2662-8465
Titre abrégé: Nat Aging
Pays: United States
ID NLM: 101773306

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 08 05 2023
accepted: 27 09 2023
medline: 16 11 2023
pubmed: 10 11 2023
entrez: 9 11 2023
Statut: ppublish

Résumé

Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.

Identifiants

pubmed: 37946043
doi: 10.1038/s43587-023-00513-y
pii: 10.1038/s43587-023-00513-y
pmc: PMC10645594
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1430-1445

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EXC 2030 - 390661388
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 415274764

Informations de copyright

© 2023. The Author(s).

Références

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
doi: 10.1016/j.cell.2013.05.039 pubmed: 23746838 pmcid: 3836174
Ferrucci, L. & Kuchel, G. A. Heterogeneity of aging: individual risk factors, mechanisms, patient priorities, and outcomes. J. Am. Geriatr. Soc. 69, 610–612 (2021).
pubmed: 33462804 pmcid: 9221786 doi: 10.1111/jgs.17011
Bahar, R. et al. Increased cell-to-cell variation in gene expression in aging mouse heart. Nature 441, 1011–1014 (2006).
pubmed: 16791200 doi: 10.1038/nature04844
Somel, M., Khaitovich, P., Bahn, S., Pääbo, S. & Lachmann, M. Gene expression becomes heterogeneous with age. Curr. Biol. 16, R359–R360 (2006).
pubmed: 16713941 doi: 10.1016/j.cub.2006.04.024
Işıldak, U., Somel, M., Thornton, J. M. & Dönertaş, H. M. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci. Rep. 10, 4080 (2020).
pubmed: 32139741 pmcid: 7058021 doi: 10.1038/s41598-020-60998-0
He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G.-H. Single-cell omics in aging: a young and growing field. Nat. Metab. 2, 293–302 (2020).
pubmed: 32694606 doi: 10.1038/s42255-020-0196-7
Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).
pubmed: 30936469 doi: 10.1038/s41575-019-0134-x
Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16, 179–203 (1996).
pubmed: 8839925 doi: 10.1146/annurev.nu.16.070196.001143
White, R. R. et al. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 16, 899 (2015).
pubmed: 26541291 pmcid: 4636074 doi: 10.1186/s12864-015-2061-8
Hahn, O. et al. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat. Metab. 1, 1059–1073 (2019).
pubmed: 31742247 pmcid: 6861129 doi: 10.1038/s42255-019-0121-0
Bozukova, M. et al. Aging is associated with increased chromatin accessibility and reduced polymerase pausing in liver. Mol. Syst. Biol. 18, e11002 (2022).
pubmed: 36082605 pmcid: 9459415 doi: 10.15252/msb.202211002
Chung, K. W. Advances in understanding of the role of lipid metabolism in aging. Cells 10, 880 (2021).
pubmed: 33924316 pmcid: 8068994 doi: 10.3390/cells10040880
Schleicher, J., Dahmen, U., Guthke, R. & Schuster, S. Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake. J. R. Soc. Interface 14, 20170443 (2017).
pubmed: 28835543 pmcid: 5582132 doi: 10.1098/rsif.2017.0443
Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).
pubmed: 28166538 pmcid: 5321580 doi: 10.1038/nature21065
McIntosh, A. L. et al. Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis. Am. J. Physiol. Cell Physiol. 303, C728–C742 (2012).
pubmed: 22744009 pmcid: 3469596 doi: 10.1152/ajpcell.00448.2011
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Zhang, M. J., Pisco, A. O., Darmanis, S. & Zou, J. Mouse aging cell atlas analysis reveals global and cell type-specific aging signatures. Elife 10, e62293 (2021).
pubmed: 33847263 pmcid: 8046488 doi: 10.7554/eLife.62293
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891 pmcid: 4676162 doi: 10.1186/s13059-015-0844-5
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313 pmcid: 6447622 doi: 10.1038/s41467-019-09234-6
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).
pubmed: 25058159 pmcid: 4109854 doi: 10.1371/journal.pcbi.1003731
Pontoglio, M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J. Am. Soc. Nephrol. 11, S140–S143 (2000).
pubmed: 11065346 doi: 10.1681/ASN.V11suppl_2s140
Bonzo, J. A., Ferry, C. H., Matsubara, T., Kim, J.-H. & Gonzalez, F. J. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J. Biol. Chem. 287, 7345–7356 (2012).
pubmed: 22241473 pmcid: 3293558 doi: 10.1074/jbc.M111.334599
Wangensteen, K. J., Zhang, S., Greenbaum, L. E. & Kaestner, K. H. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev. 29, 904–909 (2015).
pubmed: 25934503 pmcid: 4421979 doi: 10.1101/gad.258855.115
Matsusue, K. et al. Hepatic CCAAT/enhancer binding protein alpha mediates induction of lipogenesis and regulation of glucose homeostasis in leptin-deficient mice. Mol. Endocrinol. 18, 2751–2764 (2004).
pubmed: 15319454 doi: 10.1210/me.2004-0213
Veum, V. L. et al. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and during fat loss. Int. J. Obes. (Lond) 36, 1195–1202 (2012).
pubmed: 22143616 doi: 10.1038/ijo.2011.240
Lin, W.-J. et al. LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acids Res. 49, W336–W345 (2021).
pubmed: 34048582 pmcid: 8262718 doi: 10.1093/nar/gkab419
Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
pubmed: 20376053 pmcid: 3730126 doi: 10.1038/nm0410-400
Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8, 728 (2019).
pubmed: 31315173 pmcid: 6678812 doi: 10.3390/cells8070728
Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019).
pubmed: 31535084 pmcid: 6751089 doi: 10.1038/s42255-019-0109-9
Marchetti, P., Fovez, Q., Germain, N., Khamari, R. & Kluza, J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J. 34, 13106–13124 (2020).
pubmed: 32808332 doi: 10.1096/fj.202000767R
Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012).
pubmed: 23092819 pmcid: 3594552 doi: 10.1515/hsz-2012-0198
Stuart, T., Srivastava, A., Lareau, C. & Satija, R. Multimodal single-cell chromatin analysis with Signac. Preprint at bioRxiv https://doi.org/10.1101/2020.11.09.373613 (2020).
Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).
pubmed: 30962623 doi: 10.1038/s41592-019-0367-1
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
pubmed: 31292543 pmcid: 6687507 doi: 10.1038/s41586-019-1373-2
Tanami, S. et al. Dynamic zonation of liver polyploidy. Cell Tissue Res. 368, 405–410 (2017).
pubmed: 27301446 doi: 10.1007/s00441-016-2427-5
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Wang, X. et al. The impact of hepatocyte nuclear factor-1α on liver malignancies and cell stemness with metabolic consequences. Stem Cell Res. Ther. 10, 315 (2019).
pubmed: 31685031 pmcid: 6829964 doi: 10.1186/s13287-019-1438-z
Giralt, A. et al. E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes. Mol Metab 11, 104–112 (2018).
pubmed: 29526568 pmcid: 6001358 doi: 10.1016/j.molmet.2018.02.011
Mao, Z. et al. ETV5 regulates hepatic fatty acid metabolism through PPAR signaling pathway. Diabetes 70, 214–226 (2021).
pubmed: 33093014 doi: 10.2337/db20-0619
Xu, Z. et al. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc. Natl Acad. Sci. USA 102, 4120–4125 (2005).
pubmed: 15738389 pmcid: 554825 doi: 10.1073/pnas.0500660102
Xu, L., Zhou, L. & Li, P. CIDE proteins and lipid metabolism. Arterioscler. Thromb. Vasc. Biol. 32, 1094–1098 (2012).
pubmed: 22517368 doi: 10.1161/ATVBAHA.111.241489
Barneda, D. et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 4, e07485 (2015).
pubmed: 26609809 pmcid: 4755750 doi: 10.7554/eLife.07485
Xu, W. et al. Differential roles of cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J. Biol. Chem. 291, 4282–4293 (2016).
pubmed: 26733203 pmcid: 4813457 doi: 10.1074/jbc.M115.701094
Matsusue, K. et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 7, 302–311 (2008).
pubmed: 18396136 pmcid: 2587176 doi: 10.1016/j.cmet.2008.03.003
Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871.e8 (2018).
pubmed: 30078726 pmcid: 6582963 doi: 10.1016/j.molcel.2018.06.044
Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).
pubmed: 33850129 pmcid: 8044133 doi: 10.1038/s41467-021-22368-w
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Richter, M. L. et al. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat. Commun. 12, 4264 (2021).
pubmed: 34253736 pmcid: 8275628 doi: 10.1038/s41467-021-24543-5
Bahar Halpern, K. et al. Bursty gene expression in the intact mammalian liver. Mol. Cell 58, 147–156 (2015).
pubmed: 25728770 doi: 10.1016/j.molcel.2015.01.027
Eling, N., Richard, A. C., Richardson, S., Marioni, J. C. & Vallejos, C. A. Correcting the mean-variance dependency for differential variability testing using single-cell RNA sequencing data. Cell Syst. 7, 284–294 (2018).
pubmed: 30172840 pmcid: 6167088 doi: 10.1016/j.cels.2018.06.011
Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes aging tissues in the mouse. Nature 583, 590–595 (2020).
doi: 10.1038/s41586-020-2496-1
Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).
pubmed: 27074508 pmcid: 5035541 doi: 10.1038/nature17638
Chen, J. et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci. Adv. 7, eabd7819 (2021).
pubmed: 33536212 pmcid: 7857692 doi: 10.1126/sciadv.abd7819
Wynne, H. A. et al. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology 9, 297–301 (1989).
pubmed: 2643548 doi: 10.1002/hep.1840090222
Sastre, J. et al. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 24, 1199–1205 (1996).
pubmed: 8903398 doi: 10.1002/hep.510240536
Matsumura, T., Makino, R. & Mitamura, K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clin. Cancer Res. 7, 594–599 (2001).
pubmed: 11297254
Nakagawa, H. et al. Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proc. Natl Acad. Sci. USA 111, 1090–1095 (2014).
pubmed: 24395807 pmcid: 3903249 doi: 10.1073/pnas.1322731111
Begum, H. M., Mariano, C., Zhou, H. & Shen, K. E-cadherin regulates mitochondrial membrane potential in cancer cells. Cancers (Basel) 13, 5054 (2021).
pubmed: 34680202 doi: 10.3390/cancers13205054
Uno, Y. et al. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. Drug Metab. Pharmacokinet. 32, 100–107 (2017).
pubmed: 28153492 doi: 10.1016/j.dmpk.2016.10.409
Gong, J. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195, 953–963 (2011).
pubmed: 22144693 pmcid: 3241734 doi: 10.1083/jcb.201104142
Zhou, L. et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56, 95–107 (2012).
pubmed: 22278400 doi: 10.1002/hep.25611
Sans, A. et al. The differential expression of Cide family members is associated with NAFLD progression from steatosis to steatohepatitis. Sci. Rep. 9, 7501 (2019).
pubmed: 31097771 pmcid: 6522528 doi: 10.1038/s41598-019-43928-7
Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).
pubmed: 19627270 doi: 10.1111/j.1474-9726.2009.00481.x
Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).
pubmed: 28608850 pmcid: 5474745 doi: 10.1038/ncomms15691
Nassir, F., Rector, R. S., Hammoud, G. M. & Ibdah, J. A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 11, 167–175 (2015).
Lee, B. P. et al. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 903–913 (2016).
pubmed: 27363602 pmcid: 5013025 doi: 10.1111/acel.12499
Heintz, C. et al. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102–106 (2017).
pubmed: 27919065 doi: 10.1038/nature20789
Lai, R. W. et al. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep. 52, 86–108 (2019).
pubmed: 30526773 pmcid: 6386224 doi: 10.5483/BMBRep.2019.52.1.296
Kelmer Sacramento, E. et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020).
pubmed: 32558274 pmcid: 7301280 doi: 10.15252/msb.20209596
Berg, S. et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Ntranos, V., Yi, L., Melsted, P. & Pachter, L. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat. Methods 16, 163–166 (2019).
pubmed: 30664774 doi: 10.1038/s41592-018-0303-9
Zhang, X. et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721–D728 (2019).
pubmed: 30289549 doi: 10.1093/nar/gky900
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Love, M., Anders, S. & Huber, W. Differential analysis of count data-the DESeq2 package. Genome Biol. 15, 10–1186 (2014).
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Hagemann-Jensen, M., Ziegenhain, C. & Sandberg, R. Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress. Nat. Biotechnol. 40, 1452–1457 (2022).
pubmed: 35637418 pmcid: 9546772 doi: 10.1038/s41587-022-01311-4
Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience 7, giy059 (2018).
pubmed: 29846586 pmcid: 6007394 doi: 10.1093/gigascience/giy059
Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016).
pubmed: 26661513 doi: 10.1039/C5MB00663E
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756 pmcid: 4685948 doi: 10.1038/nature14590

Auteurs

Chrysa Nikopoulou (C)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.

Niklas Kleinenkuhnen (N)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.
Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.

Swati Parekh (S)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.
Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma, Biberach, Germany.

Tonantzi Sandoval (T)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.

Christoph Ziegenhain (C)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Farina Schneider (F)

Institute for Pathology, University Hospital Cologne, Cologne, Germany.

Patrick Giavalisco (P)

Metabolic Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany.

Kat-Folz Donahue (KF)

FACS and Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany.

Anna Juliane Vesting (AJ)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Marcel Kirchner (M)

FACS and Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany.

Mihaela Bozukova (M)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany.

Christian Vossen (C)

Max Planck Institute for Metabolism Research, Cologne, Germany.

Janine Altmüller (J)

Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.

Thomas Wunderlich (T)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
Max Planck Institute for Metabolism Research, Cologne, Germany.

Rickard Sandberg (R)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Vangelis Kondylis (V)

Institute for Pathology, University Hospital Cologne, Cologne, Germany.
Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany.

Achim Tresch (A)

Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany. achim.tresch@uni-koeln.de.
Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany. achim.tresch@uni-koeln.de.

Peter Tessarz (P)

Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany. ptessarz@age.mpg.de.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany. ptessarz@age.mpg.de.
Department of Human Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands. ptessarz@age.mpg.de.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH