Predicting multiple sclerosis severity with multimodal deep neural networks.


Journal

BMC medical informatics and decision making
ISSN: 1472-6947
Titre abrégé: BMC Med Inform Decis Mak
Pays: England
ID NLM: 101088682

Informations de publication

Date de publication:
09 Nov 2023
Historique:
received: 17 07 2022
accepted: 25 10 2023
medline: 13 11 2023
pubmed: 10 11 2023
entrez: 10 11 2023
Statut: epublish

Résumé

Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplicity. In this paper, we proposed the idea of using patients' multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS severity. The proposed pipeline demonstrates up to 19% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes.

Identifiants

pubmed: 37946182
doi: 10.1186/s12911-023-02354-6
pii: 10.1186/s12911-023-02354-6
pmc: PMC10634041
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

255

Subventions

Organisme : NIH HHS
ID : R01AG066749
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Medicina (Kaunas). 2019 May 31;55(6):
pubmed: 31159275
Neuropathol Appl Neurobiol. 2018 Jun;44(4):377-390
pubmed: 28419506
Sci Data. 2019 May 10;6(1):52
pubmed: 31076572
Brain. 2022 Sep 14;145(9):3147-3161
pubmed: 35104840
Radiology. 2020 Feb;294(2):398-404
pubmed: 31845845
J Am Med Inform Assoc. 2018 Oct 1;25(10):1419-1428
pubmed: 29893864
Neurology. 2019 Mar 5;92(10):e1029-e1040
pubmed: 30770430
Prion. 2013 Jan-Feb;7(1):66-75
pubmed: 23324595
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
pubmed: 20378467
Brain Imaging Behav. 2019 Aug;13(4):1103-1114
pubmed: 29992392
Neurology. 2005 Apr 12;64(7):1144-51
pubmed: 15824338
Arch Neurol. 2005 Jun;62(6):865-70
pubmed: 15956157
Eur J Neurol. 2019 Jun;26(6):893-902
pubmed: 30629788
Mult Scler. 2015 Sep;21(10):1280-90
pubmed: 25583833
Mult Scler Relat Disord. 2020 Apr;39:101884
pubmed: 31865272
Mult Scler Relat Disord. 2016 Sep;9 Suppl 1:S5-S48
pubmed: 27640924
BMC Med Inform Decis Mak. 2017 Feb 28;17(1):24
pubmed: 28241760
JAMA Neurol. 2019 Jun 1;76(6):665-671
pubmed: 30882868
IEEE Trans Med Imaging. 2019 Aug;38(8):1875-1884
pubmed: 30835219
Brain. 2002 Sep;125(Pt 9):1972-9
pubmed: 12183343
Lancet Neurol. 2018 Feb;17(2):162-173
pubmed: 29275977
N Engl J Med. 2000 Nov 16;343(20):1430-8
pubmed: 11078767
Neurology. 1983 Nov;33(11):1444-52
pubmed: 6685237
Magn Reson Med. 1999 Dec;42(6):1072-81
pubmed: 10571928
PLoS One. 2017 Apr 5;12(4):e0174866
pubmed: 28379999
Sci Rep. 2020 Dec 3;10(1):21038
pubmed: 33273676
Hum Brain Mapp. 2010 May;31(5):798-819
pubmed: 20017133
J Biomed Inform. 2022 Jun;130:104079
pubmed: 35489596
Ann Neurol. 2017 Jun;81(6):857-870
pubmed: 28512753
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573

Auteurs

Kai Zhang (K)

Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, University of Texas Health Sciences Center at Houston, Houston, TX, USA.

John A Lincoln (JA)

Department of Neurology, University of Texas Health Sciences Center, McGovern Medical School, Houston, TX, USA.

Xiaoqian Jiang (X)

Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, University of Texas Health Sciences Center at Houston, Houston, TX, USA.

Elmer V Bernstam (EV)

Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
Division of General Internal Medicine, Department of Internal Medicine, University of Texas Health Sciences Center, McGovern Medical School, Houston, TX, USA.

Shayan Shams (S)

Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics, University of Texas Health Sciences Center at Houston, Houston, TX, USA. Shayan.Shams@sjsu.edu.
Department of Applied Data Science, San Jose State University, San Jose, CA, USA. Shayan.Shams@sjsu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH