Quantitative diffusion imaging and genotype-by-sex interactions in a rat model of Alexander disease.

Alexander disease DTI DWI NODDI diffusion genotype-sex interaction preclinical

Journal

Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245

Informations de publication

Date de publication:
09 Nov 2023
Historique:
revised: 02 10 2023
received: 10 08 2023
accepted: 18 10 2023
medline: 10 11 2023
pubmed: 10 11 2023
entrez: 10 11 2023
Statut: aheadofprint

Résumé

The clinical diagnosis and classification of Alexander disease (AxD) relies in part on qualitative neuroimaging biomarkers; however, these biomarkers fail to distinguish and discriminate different subtypes of AxD, especially in the presence of overlap in clinical symptoms. To address this gap in knowledge, we applied neurite orientation dispersion and density imaging (NODDI) to an innovative CRISPR-Cas9 rat genetic model of AxD to gain quantitative insights into the neural substrates and brain microstructural changes seen in AxD and to potentially identify novel quantitative NODDI biomarkers of AxD. Multi-shell DWI of age- and sex-matched AxD and wild-type Sprague Dawley rats (n = 6 per sex per genotype) was performed and DTI and NODDI measures calculated. A 3 × 2 × 2 analysis of variance model was used to determine the effect of genotype, biological sex, and laterality on quantitative measures of DTI and NODDI across regions of interest implicated in AxD. There is a significant effect of genotype in the amygdala, hippocampus, neocortex, and thalamus in measures of both DTI and NODDI brain microstructure. A genotype by biological sex interaction was identified in DTI and NODDI measures in the corpus callosum, hippocampus, and neocortex. We present the first application of NODDI to the study of AxD using a rat genetic model of AxD. Our analysis identifies alterations in NODDI and DTI measures to large white matter tracts and subcortical gray nuclei. We further identified genotype by sex interactions, suggesting a possible role for biological sex in the neuropathogenesis of AxD.

Identifiants

pubmed: 37946544
doi: 10.1002/mrm.29917
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Eunice Kennedy Shriver National Institute of Child Health and Human Development
ID : HD076892
Organisme : Eunice Kennedy Shriver National Institute of Child Health and Human Development
ID : HD105353
Organisme : NIH NINDS
ID : NS110719

Informations de copyright

© 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Références

Srivastava S, Waldman A, Naidu S. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. Alexander Disease. University of Washington; 2020.
Russo LSJ, Aron A, Anderson PJ. Alexander's disease: a report and reappraisal. Neurology. 1976;26:607-614. doi:10.1212/wnl.26.7.607
Yoshida T, Sasaki M, Yoshida M, et al. Nationwide survey of Alexander disease in Japan and proposed new guidelines for diagnosis. J Neurol. 2011;258:1998-2008. doi:10.1007/s00415-011-6056-3
Prust M, Wang J, Morizono H, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77:1287-1294. doi:10.1212/WNL.0b013e3182309f72
Van Der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22:541-552.
Kirsch AC, McCall DM, Lange H, Renaud D, Brown T, Zaccariello MJ. Neuropsychological functioning in Alexander disease: a case series. Child Neurol Open. 2021;8:/. doi:10.1177/2329048x211048614
Mura E, Nicita F, Masnada S, et al. Alexander disease evolution over time: data from an Italian cohort of pediatric-onset patients. Mol Genet Metab. 2021;134:353-358. doi:10.1016/j.ymgme.2021.11.009
Zang L, Wang J, Jiang Y, et al. Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet. 2013;58:183-188. doi:10.1038/jhg.2012.152
Shiohama T, Stewart N, Nangaku M, van der Kouwe AJW, Takahashi E. Identification of association fibers using ex vivo diffusion tractography in Alexander disease brains. J Neuroimaging. 2022;32:866-874. doi:10.1111/jon.13040
Hagemann TL, Powers B, Lin NH, et al. Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci Transl Med. 2021;13:eabg4711. doi:10.1126/scitranslmed.abg4711
Yi SY, Barnett BR, Poetzel MJ, Stowe NA, Yu JPJ. Clinical translational neuroimaging of the antioxidant effect of N-acetylcysteine on neural microstructure. Magn Reson Med. 2022;87:820-836. doi:10.1002/mrm.29035
Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208-S219. doi:10.1016/J.NEUROIMAGE.2004.07.051
Rumple A, McMurray M, Johns J, et al. 3-dimensional diffusion tensor imaging (DTI) atlas of the rat brain. PloS One. 2013;8:e67334. doi:10.1371/journal.pone.0067334
Harms RL, Fritz FJ, Tobisch A, Goebel R, Roebroeck A. Robust and fast nonlinear optimization of diffusion MRI microstructure models. Neuroimage. 2017;155:82-96. doi:10.1016/J.NEUROIMAGE.2017.04.064
Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage. 2010;52:1374-1389. doi:10.1016/j.neuroimage.2010.05.043
Van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104. doi:10.1158/0008-5472.CAN-17-0339
Uematsu A, Matsui M, Tanaka C, et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PloS One. 2012;7. doi:10.1371/journal.pone.0046970
Premachandran H, Zhao M, Arruda-Carvalho M. Sex differences in the development of the rodent Corticolimbic system. Front Neurosci. 2020;14:14. doi:10.3389/fnins.2020.583477
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000-1016. doi:10.1016/j.neuroimage.2012.03.072
Tariq M, Schneider T, Alexander DC, Gandini Wheeler-Kingshott CA, Zhang H. Bingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI. Neuroimage. 2016;133:207-223. doi:10.1016/j.neuroimage.2016.01.046
Colgan N, Siow B, O'Callaghan JM, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease. Neuroimage. 2016;125:739-744. doi:10.1016/j.neuroimage.2015.10.043
Timmers I, Roebroeck A, Bastiani M, Jansma B, Rubio-Gozalbo E, Zhang H. Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI. PloS One. 2016;11:e0167884. doi:10.1371/journal.pone.0167884
Figley CR, Uddin MN, Wong K, Kornelsen J, Puig J, Figley TD. Potential pitfalls of using fractional anisotropy, axial diffusivity, and radial diffusivity as biomarkers of cerebral white matter microstructure. Front Neurosci. 2022;15:799576. doi:10.3389/FNINS.2021.799576/BIBTEX
Hagemann TL, Paylor R, Messing A. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of alexander disease. J Neurosci. 2013;33:18698-18706. doi:10.1523/JNEUROSCI.3693-13.2013
Restrepo J, Bernardin L, Hammeke T. Neurocognitive decline in Alexander disease. Clin Neuropsychol. 2011;25:1266-1277. doi:10.1080/13854046.2011.604043
Nabulsi L, Lawrence KE, Laltoo E, et al. Advanced diffusion-weighted MRI sensitively detects age and sex effects in 34,423 adults. Alzheimers Dement. 2022;18:e064791. doi:10.1002/ALZ.064791
Bergamino M, Keeling EG, Baxter LC, Sisco NJ, Walsh RR, Stokes AM. Sex differences in Alzheimer's disease revealed by free-water diffusion tensor imaging and voxel-based morphometry. J Alzheimers Dis. 2022;85:395-414. doi:10.3233/JAD-210406
Steinmann S, Lyall AE, Langhein M, et al. Sex-related differences in white matter asymmetry and its implications for verbal working memory in psychosis high-risk state. Front Psych. 2021;12:686967. doi:10.3389/FPSYT.2021.686967
Lawrence KE, Abaryan Z, Laltoo E, et al. White matter microstructure shows sex differences in late childhood: evidence from 6797 children. Hum Brain Mapp. 2023;44:535-548. doi:10.1002/HBM.26079
Barnett BR, Torres-Velázquez M, Yi SY, et al. Sex-specific deficits in neurite density and white matter integrity are associated with targeted disruption of exon 2 of the Disc1 gene in the rat. Transl Psychiatry. 2019;9. doi:10.1038/S41398-019-0429-2
Vinh To X, Kurniawan ND, Cummingc P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res. 2023;1820:148562. doi:10.1016/J.BRAINRES.2023.148562
Schilling KG, Grussu F, Ianus A, et al. Recommendations and guidelines from the ISMRM diffusion study group for preclinical diffusion MRI: part 2 - ex vivo imaging. Stephen J Blackband. 2022;1:18 https://arxiv.org/abs/2209.13371v2. Accessed September 27, 2023

Auteurs

Nicholas A Stowe (NA)

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Ajay P Singh (AP)

Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Brian R Barnett (BR)

Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Sue Y Yi (SY)

Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Paloma C Frautschi (PC)

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Albee Messing (A)

Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Tracy L Hagemann (TL)

Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

John-Paul J Yu (JJ)

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Classifications MeSH