Effect of a Novel sputtering process on the chemical and biological properties of silver-gold alloys.

X-ray diffraction antibacterial agents gold silver solutions

Journal

International wound journal
ISSN: 1742-481X
Titre abrégé: Int Wound J
Pays: England
ID NLM: 101230907

Informations de publication

Date de publication:
10 Nov 2023
Historique:
revised: 16 10 2023
received: 29 08 2023
accepted: 17 10 2023
medline: 10 11 2023
pubmed: 10 11 2023
entrez: 10 11 2023
Statut: aheadofprint

Résumé

Silver-gold nanocrystalline films were sputtered on HDPE substrates by a physical vapour deposition process using alloys with a nominal composition of 65% silver/35% gold or 35% silver/65% gold by weight, with comparison to a 100% silver target. Novel process conditions were introduced to include both water and oxygen as reactive gases. X-ray diffraction and chemical digests were used to assess the structure and chemical composition of the films. Log reductions and corrected zone of inhibition tests were used to measure the biological properties. Despite a range of physical and chemical properties, biological tests showed that the bactericidal properties of all silver-gold films were comparable with silver-only films in the short term and 65% silver films made with Novel sputtering conditions had comparable bacteriostatic abilities to silver-only over a 7-day period. The benefit of including gold may be seen in future studies of anti-inflammatory activity.

Identifiants

pubmed: 37948116
doi: 10.1111/iwj.14475
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Alberta Innovates Graduate Student Scholarship
Organisme : Natural Sciences and Engineering Research Council of Canada(Canadian Graduate Scholarships - Master's Program)
Organisme : University Health Foundation
ID : RES0046455

Informations de copyright

© 2023 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

Références

Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J Inflamm. 2010;7(1):13. doi:10.1186/1476-9255-7-13
Nadworny PL, Landry BK, Wang J, Tredget EE, Burrell RE. Does nanocrystalline silver have a transferable effect? Wound Repair Regen. 2010;18(2):254-265. doi:10.1111/j.1524-475X.2010.00579.x
Fan F-RF, Bard AJ. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J Phys Chem B. 2002;106(2):279-287. doi:10.1021/jp012548d
Unrau KR. Activity of Nanocrystalline gold and silver alloys. ERA. 2022. https://era.library.ualberta.ca/items/e0ac4715-3e00-4814-ab41-19700ce1d802
Walz DT, DiMartino MJ, Griswold DE, Intoccia AP, Flanagan TL. Biologic actions and pharmacokinetic studies of auranofin. Am J Med. 1983;75(6):90-108. doi:10.1016/0002-9343(83)90481-3
Yamada R, Sano H, Hla T, et al. Auranofin inhibits interleukin-1β-induced transcript of cyclooxygenase-2 on cultured human synoviocytes. Eur J Pharmacol. 1999;385(1):71-79. doi:10.1016/S0014-2999(99)00707-4
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941-3965. doi:10.2147/IJN.S134526
Calamai P, Carotti S, Guerri A, et al. Biological properties of two gold(III) complexes: AuCl3 (Hpm) and AuCl2 (pm). J Inorg Biochem. 1997;66(2):103-109. doi:10.1016/S0162-0134(96)00190-0
Lansdown ABG. Silver and Gold. Patty's toxicology. American Cancer Society; 2012:75-112. doi:10.1002/0471435139.tox026.pub2
Burke LD, Nugent PF. The electrochemistry of gold: I the redox behaviour of the metal in aqueous media. Gold Bull. 1997;30(2):43-53. doi:10.1007/BF03214756
Trelewicz JR, Schuh CA. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B. 2009;79(9):94112. doi:10.1103/PhysRevB.79.094112
Nakada T, Ohkubo YOY, Kunioka AKA. Effect of water vapor on the growth of textured ZnO-based films for solar cells by DC-magnetron sputtering. Jpn J Appl Phys. 1991;30(12R):3344. doi:10.1143/JJAP.30.3344
Queirolo G, Dellagiovanna M, De Santi G. Effect of the sputtering ambient contamination on the microstructure of Al-Si films. J Vac Sci Technol A. 1989;7(3):651. doi:10.1116/1.575860
Banakh O, Schmid PE, Sanjinés R, Lévy F. Electrical and optical properties of TiOx thin films deposited by reactive magnetron sputtering. Surf Coat Technol. 2002;151-152:272-275. doi:10.1016/S0257-8972(01)01605-X
T. Nakada, Y. Ohkubo, and A. Kunioka, “Textured ZnO:Al films for solar cells by DC-magnetron sputtering in water vapor plasma,” The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991, 1991, 1389-1392. 10.1109/PVSC.1991.169435
Pierson JF, Wiederkehr D, Billard A. Reactive magnetron sputtering of copper, silver, and gold. Thin Solid Films. 2005;478(1):196-205. doi:10.1016/j.tsf.2004.10.043
Higo M, Matsubara Y, Kobayashi Y, Mitsushio M, Yoshidome T, Nakatake S. Formation and decomposition of gold oxides prepared by an oxygen-dc glow discharge from gold films and studied by X-ray photoelectron spectroscopy. Thin Solid Films. 2020;699:137870. doi:10.1016/j.tsf.2020.137870
Tsai H, Hu E, Perng K, Chen M, Wu J-C, Chang Y-S. Instability of gold oxide Au2O3. Surf Sci. 2003;537(1):L447-L450. doi:10.1016/S0039-6028(03)00640-X
Nadworny PL. Biological activity of nanostructured silver. ERA. 2022. https://era.library.ualberta.ca/items/1d6adcfa-166d-45fb-bddc-37823fbff14d
Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Lehrbuch KE, Zsigmondy R, eds. Chemische Technologie in Einzeldarstellungen. Springer; 1912:387-409. doi:10.1007/978-3-662-33915-2_7
Alloy sputtering. Surf Sci. 1980;92(1):283-309. doi:10.1016/0039-6028(80)90258-7
Ho PS. Effects of enhanced diffusion on preferred sputtering of homogeneous alloy surfaces. Surf Sci. 1978;72(2):253-263. doi:10.1016/0039-6028(78)90294-7
Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L, et al. Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano. 2016;10(1):188-198. doi:10.1021/acsnano.5b05755
He X, Zhang S-E, Cheng F, Chen Z-X. The region-specific segregation and catalytic activity of gold-silver nanoparticles. Chem Commun. 2018;54(6):638-641. doi:10.1039/C7CC07963J
Carvalho I, Dias N, Henriques M, et al. Antibacterial effects of bimetallic clusters incorporated in amorphous carbon for stent application. ACS Appl Mater Interfaces. 2020;12(22):24555-24563. doi:10.1021/acsami.0c02821
Wang A-Q, Liu J-H, Lin SD, Lin T-S, Mou C-Y. A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization. J Catal. 2005;233(1):186-197. doi:10.1016/j.jcat.2005.04.028
Marsich E, Travan A, Donati I, et al. Biological response of hydrogels embedding gold nanoparticles. Colloids Surf B Biointerfaces. 2011;83(2):331-339. doi:10.1016/j.colsurfb.2010.12.002
Panicker S, Ahmady IM, Han C, Chehimi M, Mohamed AA. On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study. Mater Today Chem. 2020;16:100237. doi:10.1016/j.mtchem.2019.100237

Auteurs

Keeley Kathryn Anne Hatch (KKA)

Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.

Robert Edward Burrell (RE)

Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.

Colleen Nancy Ward (CN)

Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.

Classifications MeSH