Saliva Collection Methods Among Children and Adolescents: A Scoping Review.


Journal

Molecular diagnosis & therapy
ISSN: 1179-2000
Titre abrégé: Mol Diagn Ther
Pays: New Zealand
ID NLM: 101264260

Informations de publication

Date de publication:
10 Nov 2023
Historique:
medline: 11 11 2023
pubmed: 11 11 2023
entrez: 10 11 2023
Statut: aheadofprint

Résumé

Saliva can be used for screening and diagnostic purposes. Although multiple saliva collection methods are available, their use in children can be limited due to lack of cooperation, developmental stage, and age. The aim of this scoping review was to comprehensively appraise the different methods of saliva collection among both children and adolescents by assessing the available scientific literature. A literature search was performed using the databases PubMed, Embase, and Web of Science. Eligible studies on saliva collection methods among children and adolescents were included for this review. The literature search identified 249 eligible articles, of which 205 had a cross-sectional study design. Four distinct saliva collection methods have surfaced: the drooling method, the absorption method, the spitting method, and the suction method. Among infants or children under the age of 6 years, the suction and absorption methods were most preferred. The drooling and spitting methods were only applicable among children above the age of 3 years. When children were not willing to cooperate, the absorption method was most feasible. In adolescents and older children, no specific method was found to be preferred over another method. Overall, saliva collection is well tolerated by children and adolescents, with the absorption and suction methods being preferred with young and uncooperative children.

Identifiants

pubmed: 37950136
doi: 10.1007/s40291-023-00684-9
pii: 10.1007/s40291-023-00684-9
doi:

Types de publication

Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Health~Holland
ID : R/011124.03.02.

Informations de copyright

© 2023. The Author(s).

Références

Amerongen AVN, Veerman ECI. Saliva—the defender of the oral cavity. Oral Dis. 2002;8:12–22. https://doi.org/10.1034/j.1601-0825.2002.1o816.x .
doi: 10.1034/j.1601-0825.2002.1o816.x pubmed: 11936451
Llena-Puy C. The rôle of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal. 2006;11:E449–55.
pubmed: 16878065
Martina E, Campanati A, Diotallevi F, Offidani A. Saliva and oral diseases. J Clin Med. 2020;9(2):466. https://doi.org/10.3390/jcm9020466 .
doi: 10.3390/jcm9020466 pubmed: 32046271 pmcid: 7074457
Veerman ECI, Keybus PAM, Vissink A, Amerongen AVN. Human glandular salivas: their separate collection and analysis. Eur J Oral Sci. 1996;104(4):346–52. https://doi.org/10.1111/j.1600-0722.1996.tb00090.x .
doi: 10.1111/j.1600-0722.1996.tb00090.x pubmed: 8930581
Castagnola M, Picciotti PM, Messana I, Fanali C, Fiorita A, Cabras T, et al. Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol Ital. 2011;31:347–57.
pubmed: 22323845 pmcid: 3272865
Bikker FJ, Nascimento GG, Nazmi K, Silbereisen A, Belibasakis GN, Kaman WE, et al. Salivary total protease activity based on a broad-spectrum fluorescence resonance energy transfer approach to monitor induction and resolution of gingival inflammation. Mol Diagn Ther. 2019;23:667–76. https://doi.org/10.1007/s40291-019-00421-1 .
doi: 10.1007/s40291-019-00421-1 pubmed: 31372941 pmcid: 6775538
Kamounah S, Sembler-Møller ML, Nielsen CH, Pedersen AML. Sjögren’s syndrome: novel insights from proteomics and miRNA expression analysis. Front Immunol. 2023. https://doi.org/10.3389/fimmu.2023.1183195 .
doi: 10.3389/fimmu.2023.1183195 pubmed: 37275849 pmcid: 10232878
Bhat SS, Kalal BS, Veena KM, Kakunje A, Sahana KSR, Rekha PD, et al. Serum and salivary immunoglobulin G4 levels in children with autism spectrum disorder from south India: a case–control study. Am J Clin Exp Immunol. 2021;10:103–11.
pubmed: 35106187 pmcid: 8784761
Lee Y-H, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–8.
pubmed: 19824562 pmcid: 2860957
Shannon IL, Chauncey HH. A parotid fluid collection device with improved stability characteristics. J Oral Ther Pharmacol. 1967;4(2):93–7.
pubmed: 6062045
Gomar-Vercher S, Simón-Soro A, Montiel-Company JM, Almerich-Silla JM, Mira A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS ONE. 2018;13: e0198021. https://doi.org/10.1371/journal.pone.0198021 .
doi: 10.1371/journal.pone.0198021 pubmed: 29856779 pmcid: 5983451
Priya Y, Muthu Prathibha K. Methods of collection of saliva—a review. Int J Sci Res. 2017;3(3):149–53. https://doi.org/10.18231/2395-499X.2017.0032 .
doi: 10.18231/2395-499X.2017.0032
Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn N-E, Paster BJ. Comparative analysis of bacterial profiles in unstimulated and stimulated saliva samples. J Oral Microbiol. 2016;8:30112. https://doi.org/10.3402/jom.v8.30112 .
doi: 10.3402/jom.v8.30112 pubmed: 26987356
Keil MF. Salivary cortisol: a tool for biobehavioral research in children. J Pediatr Nurs. 2012;27(3):287–9. https://doi.org/10.1016/j.pedn.2012.02.003 .
doi: 10.1016/j.pedn.2012.02.003 pubmed: 22405849 pmcid: 3335961
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol [Internet]. 2005;8:19–32. https://doi.org/10.1080/1364557032000119616 .
doi: 10.1080/1364557032000119616
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73. https://doi.org/10.7326/m18-0850 .
doi: 10.7326/m18-0850 pubmed: 30178033
Visvanathan V, Nix P. Managing the patient presenting with xerostomia: a review. Int J Clin Pract. 2010;64(3):404–7. https://doi.org/10.1111/j.1742-1241.2009.02132.x .
doi: 10.1111/j.1742-1241.2009.02132.x pubmed: 19817913
Rotenberg S, McGrath JJ. Sampling compliance for cortisol upon awakening in children and adolescents. Psychoneuroendocrinology. 2014;40:69–75. https://doi.org/10.1016/j.psyneuen.2013.10.002 .
doi: 10.1016/j.psyneuen.2013.10.002 pubmed: 24485477
Toro E, Nascimento MM, Suarez-Perez E, Burne RA, Elias-Boneta A, Morou-Bermudez E. The effect of sucrose on plaque and saliva urease levels in vivo. Arch Oral Biol. 2010;55(3):249–54. https://doi.org/10.1016/j.archoralbio.2009.12.007 .
doi: 10.1016/j.archoralbio.2009.12.007 pubmed: 20096398 pmcid: 2853032
Yang X, He L, Yan S, Chen X, Que G. The impact of caries status on supragingival plaque and salivary microbiome in children with mixed dentition: a cross-sectional survey. BMC Oral Health. 2021. https://doi.org/10.1186/s12903-021-01683-0 .
doi: 10.1186/s12903-021-01683-0 pubmed: 34961505 pmcid: 8713393
Yucel ZPK, Silbereisen A, Emingil G, Tokgoz Y, Kose T, Sorsa T, et al. Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis. J Periodontol. 2020;91(10):1339–47. https://doi.org/10.1002/jper.19-0415 .
doi: 10.1002/jper.19-0415 pubmed: 32100289
Yao L, Fu H, Bai L, Deng W, Xie F, Li Y, et al. Saliva nitrite is higher in male children with autism spectrum disorder and positively correlated with serum nitrate. Redox Rep. 2021;26(1):124–33. https://doi.org/10.1080/13510002.2021.1959133 .
doi: 10.1080/13510002.2021.1959133 pubmed: 34323675 pmcid: 8330712
Westwell-Roper C, Best JR, Naqqash Z, Au A, Lin B, Lu C, et al. Severe symptoms predict salivary interleukin-6, interleukin-1β, and tumor necrosis factor-α levels in children and youth with obsessive-compulsive disorder. J Psychosom Res. 2022;155: 110743. https://doi.org/10.1016/j.jpsychores.2022.110743 .
doi: 10.1016/j.jpsychores.2022.110743 pubmed: 35190349
Tvarijonaviciute A, Martinez-Lozano N, Rios R, Marcilla de Teruel MC, Garaulet M, Cerón JJ. Saliva as a non-invasive tool for assessment of metabolic and inflammatory biomarkers in children. Clin Nutr. 2020;39:2471–8. https://doi.org/10.1016/j.clnu.2019.10.034 .
doi: 10.1016/j.clnu.2019.10.034 pubmed: 31787367
Smith VC, Dougherty LR. Noisy spit: parental noncompliance with child salivary cortisol sampling: parental noncompliance with child cortisol sampling. Dev Psychobiol. 2014;56(4):647–56. https://doi.org/10.1002/dev.21133 .
doi: 10.1002/dev.21133 pubmed: 23754778
Amrollahi N, Enshaei Z, Kavousi F. Salivary malondialdehyde level as a lipid peroxidation marker in early childhood caries. Iran J Pediatr. 2021. https://doi.org/10.5812/ijp.113824 .
doi: 10.5812/ijp.113824
Chung J, Mukerji S, Kozlowska K. Cortisol and α-amylase awakening response in children and adolescents with functional neurological (conversion) disorder. Aust NZ J Psychiatry. 2023;57:115–29. https://doi.org/10.1177/00048674221082520 .
doi: 10.1177/00048674221082520
Hatzinger M, Brand S, Perren S, Stadelmann S, von Wyl A, von Klitzing K, et al. Electroencephalographic sleep profiles and hypothalamic-pituitary-adrenocortical (HPA)-activity in kindergarten children: early indication of poor sleep quality associated with increased cortisol secretion. J Psychiatr Res. 2008;42:532–43. https://doi.org/10.1016/j.jpsychires.2007.05.010 .
doi: 10.1016/j.jpsychires.2007.05.010 pubmed: 17645894
Whitford GM, Thomas JE, Adair SM. Fluoride in whole saliva, parotid ductal saliva and plasma in children. Arch Oral Biol. 1999;44(10):785–8. https://doi.org/10.1016/s0003-9969(99)00083-7 .
doi: 10.1016/s0003-9969(99)00083-7 pubmed: 10530910
Granger DA, Cicchetti D, Rogosch FA, Hibel LC, Teisl M, Flores E. Blood contamination in children’s saliva: prevalence, stability, and impact on the measurement of salivary cortisol, testosterone, and dehydroepiandrosterone. Psychoneuroendocrinology. 2007;32:724–33. https://doi.org/10.1016/j.psyneuen.2007.05.003 .
doi: 10.1016/j.psyneuen.2007.05.003 pubmed: 17582690
Carvalho CKS, Bezerra ACB. Microbiological assessment of saliva from children subsequent to atraumatic restorative treatment (ART): microbiological assessment of saliva after ART. Int J Paediatr Dent. 2003;13:186–92. https://doi.org/10.1046/j.1365-263x.2003.00432.x .
doi: 10.1046/j.1365-263x.2003.00432.x pubmed: 12752918
Nankar M, Walimbe H, Bijle MNA, Muchandi S, Chaturvedi S, Karekar P. Comparative evaluation and correlation of salivary total antioxidant capacity and salivary ph in caries-free and severe early childhood caries children. J Contemp Dent Pract. 2015;16(3):234–7. https://doi.org/10.5005/jp-journals-10024-1667 .
doi: 10.5005/jp-journals-10024-1667 pubmed: 26057924
Vahabzadeh Z, Hashemi Z, Nouri B, Zamani F, Shafiee F. Salivary enzymatic antioxidant activity and dental caries: a cross-sectional study. Dent Med Probl. 2020;57(4):385–91. https://doi.org/10.17219/dmp/126179 .
doi: 10.17219/dmp/126179 pubmed: 33448164
Kavanagh DA, O’Mullane DM, Smeeton N. Variation of salivary flow rate in adolescents. Arch Oral Biol. 1998;43:347–52. https://doi.org/10.1016/s0003-9969(98)00020-x .
doi: 10.1016/s0003-9969(98)00020-x pubmed: 9681109
Shitsuka C, Ibuki FK, Nogueira FN, Mendes FM, Bönecker M. Assessment of oxidative stress in saliva of children with dental erosion. Einstein (Sao Paulo). 2018. https://doi.org/10.1590/s1679-45082018ao4203 .
doi: 10.1590/s1679-45082018ao4203 pubmed: 29898026 pmcid: 5995549
Bizjak DA, Ammerpohl O, Schulz SVW, Wendt J, Steinacker JM, Flechtner-Mors M. Pro-inflammatory and (epi-)genetic markers in saliva for disease risk in childhood obesity. Nutr Metab Cardiovasc Dis. 2022;32:1502–10. https://doi.org/10.1016/j.numecd.2022.03.016 .
doi: 10.1016/j.numecd.2022.03.016 pubmed: 35450790
Shah TJ, Manju, Joshi AB, Reenayai N. Evaluation of the cariogenic potential and total antioxidant capacity of saliva after the consumption of candies and paneer: an in vivo study. J Health Allied Sci NU. 2022;12:427–40. https://doi.org/10.1055/s-0042-1743191 .
doi: 10.1055/s-0042-1743191
Pattanaporn K, Navia JM. The relationship of dental calculus to caries, gingivitis, and selected salivary factors in 11- to 13-year-old children in Chiang Mai, Thailand. J Periodontol. 1998;69(9):955–61. https://doi.org/10.1902/jop.1998.69.9.955 .
doi: 10.1902/jop.1998.69.9.955 pubmed: 9776022
Colceriu-Șimon, Hedeșiu, Toma, Armencea, Moldovan, Știufiuc, et al. The effects of low-dose irradiation on human saliva: a surface-enhanced Raman spectroscopy study. Diagnostics (Basel). 2019;9(3):101. https://doi.org/10.3390/diagnostics9030101 .
doi: 10.3390/diagnostics9030101 pubmed: 31443529 pmcid: 6787699
Siani-Rose M, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. Cannabis-responsive biomarkers: a pharmacometabolomics-based application to evaluate the impact of medical cannabis treatment on children with autism spectrum disorder. Cannabis Cannabinoid Res. 2023;8:126–37. https://doi.org/10.1089/can.2021.0129 .
doi: 10.1089/can.2021.0129 pubmed: 34874191 pmcid: 9940806
Dimitrijevic Carlsson A, Ghafouri B, Starkhammar Johansson C, Alstergren P. Unstimulated parotid saliva sampling in juvenile idiopathic arthritis and healthy controls: a proof-of-concept study on biomarkers. Diagnostics (Basel). 2020;10(4):251. https://doi.org/10.3390/diagnostics10040251 .
doi: 10.3390/diagnostics10040251 pubmed: 32344523 pmcid: 7236018
Çelik E, Kara SS, Çevik Ö. The potential use of saliva as a biofluid for systemic inflammatory response monitoring in children with pneumonia. Indian J Pediatr. 2022;89:477–83. https://doi.org/10.1007/s12098-021-03973-5 .
doi: 10.1007/s12098-021-03973-5 pubmed: 34595601
Martínez AD, Ruelas L, Granger DA. Household fear of deportation in Mexican-origin families: relation to body mass index percentiles and salivary uric acid. Am J Hum Bio. 2017;29(6): e23044. https://doi.org/10.1002/ajhb.23044 .
doi: 10.1002/ajhb.23044
Vyse AJ, Cohen BJ, Ramsay ME. A comparison of oral fluid collection devices for use in the surveillance of virus diseases in children. Public Health. 2001;115(3):201–7. https://doi.org/10.1038/sj/ph/1900751 .
doi: 10.1038/sj/ph/1900751 pubmed: 11429716
de Wildt SN, Kerkvliet KTM, Wezenberg MGA, Ottink S, Hop WCJ, Vulto AG, et al. Use of saliva in therapeutic drug monitoring of caffeine in preterm infants. Ther Drug Monit. 2001;23:250–4. https://doi.org/10.1097/00007691-200106000-00011 .
doi: 10.1097/00007691-200106000-00011 pubmed: 11360033
Hollanders JJ, De Goede P, Van Der Voorn B, Honig A, Rotteveel J, Dolman K, et al. Biphasic glucocorticoid rhythm in one month old infants: reflection of a developing HPA-axis? Horm Res Paediatr. 2019;91:60–1. https://doi.org/10.1159/000501868 .
doi: 10.1159/000501868
Larose M-P, Ouellet-Morin I, Vitaro F, Geoffroy MC, Ahun M, Tremblay RE, et al. Impact of a social skills program on children’s stress: a cluster randomized trial. Psychoneuroendocrinology. 2019;104:115–21. https://doi.org/10.1016/j.psyneuen.2019.02.017 .
doi: 10.1016/j.psyneuen.2019.02.017 pubmed: 30831344
Guedes SFF, Neves BG, Bezerra DS, Souza GHMF, Lima-Neto ABM, Guedes MIF, et al. Saliva proteomics from children with caries at different severity stages. Oral Dis. 2020;26:1219–29. https://doi.org/10.1111/odi.13352 .
doi: 10.1111/odi.13352
Tsai C-M, Tang K-S, Cheng M-C, Liu T-Y, Huang Y-H, Chen C-C, et al. Use of saliva sample to detect C-reactive protein in children with pneumonia. Pediatr Pulmonol. 2020;55(9):2457–62. https://doi.org/10.1002/ppul.24947 .
doi: 10.1002/ppul.24947 pubmed: 32633868
Morishima S, Takeda K, Greenan S, Maki Y. Salivary microbiome in children with Down syndrome: a case–control study. BMC Oral Health. 2022. https://doi.org/10.1186/s12903-022-02480-z .
doi: 10.1186/s12903-022-02480-z pubmed: 36203175 pmcid: 9535924
Pereira JL, Duarte D, Carneiro TJ, Ferreira S, Cunha B, Soares D, et al. Saliva NMR metabolomics: analytical issues in pediatric oral health research. Oral Dis. 2019;25:1545–54. https://doi.org/10.1111/odi.13117 .
doi: 10.1111/odi.13117 pubmed: 31077633
Chao CS, Shi R-Z, Kumar RB, Aye T. Salivary cortisol levels by tandem mass spectrometry during high dose ACTH stimulation test for adrenal insufficiency in children. Endocrine [Internet]. 2020;67:190–7. https://doi.org/10.1007/s12020-019-02084-8 .
doi: 10.1007/s12020-019-02084-8 pubmed: 31535345
Anandan S, Lakshminarayan N, Nagappa KG. Comparison of dental caries experience and salivary parameters among children with Down syndrome and healthy controls in Chennai, Tamil Nadu. J Indian Soc Pedod Prev Dent. 2022;40(3):274–80. https://doi.org/10.4103/jisppd.jisppd_296_21 .
doi: 10.4103/jisppd.jisppd_296_21 pubmed: 36260468
Krasteva A, Perenovska P, Ivanova A, Altankova I, Bocheva T, Kisselova A. Alteration in salivary components of children with allergic asthma. Biotechnol Biotechnol Equip. 2010;24(2):1866–9. https://doi.org/10.2478/v10133-010-0050-2 .
doi: 10.2478/v10133-010-0050-2
Chahine N, Nader M, Chalhoub W, Chahine R. Natural antioxidants and vitamins supplementation shelters adolescents from upper respiratory tract infection. Int J Child Health Nutr. 2020;9:26–33. https://doi.org/10.6000/1929-4247.2020.09.01.4 .
doi: 10.6000/1929-4247.2020.09.01.4
Meriç E, Bolgül B, Duran N, Ay E. Evaluation of oral streptococci in saliva of children with severe Early Childhood Caries and caries-free. Eur J Paediatr Dent. 2020;21(1):13–7. https://doi.org/10.23804/ejpd.2020.21.01.03 .
doi: 10.23804/ejpd.2020.21.01.03 pubmed: 32183522
Miller KE, MacDonald JP, Sullivan L, Venkata LPR, Shi J, Yeates KO, et al. Salivary miRNA expression in children with persistent post-concussive symptoms. Front Public Health. 2022. https://doi.org/10.3389/fpubh.2022.890420 .
doi: 10.3389/fpubh.2022.890420 pubmed: 36568763 pmcid: 9773996
Peker S, Kargul B, Tanboga I, Tunali-Akbay T, Yarat A, Karakoc F, et al. Oral health and related factors in a group of children with cystic fibrosis in Istanbul, Turkey. Niger J Clin Pract. 2015;18(1):56–60. https://doi.org/10.4103/1119-3077.146980 .
doi: 10.4103/1119-3077.146980 pubmed: 25511345
Forcella L, Filippi C, Waltimo T, Filippi A. Measurement of unstimulated salivary flow rate in healthy children aged 6 to 15 years. Swiss Dent J. 2018;128:962–7.
pubmed: 30525320
Petrović B, Stilinović N, Tomas A, Kojić S, Stojanović GM. Determination of salivary concentrations of leptin and adiponectin, ability to reduce ferric ions and total antioxidant capacity of saliva in patients with severe early childhood caries. Front Pediatr. 2022. https://doi.org/10.3389/fped.2022.969372 .
doi: 10.3389/fped.2022.969372 pubmed: 36120658 pmcid: 9473506
Verey F, Nexo E, Greenwood R, Berry M, Corfield AP. Trefoil factor family peptides are increased in the saliva of children with mucositis. Clin Chem Lab Med. 2011. https://doi.org/10.1515/cclm.2011.667 .
doi: 10.1515/cclm.2011.667 pubmed: 21793798
Abdulla AM, Hegde AM. Salivary cortisol levels and its implication on behavior in children with autism during dental treatment. J Clin Pediatr Dent. 2015;39:128–32. https://doi.org/10.17796/jcpd.39.2.f6h32r2531841637 .
doi: 10.17796/jcpd.39.2.f6h32r2531841637 pubmed: 25823482
Adhikari K, Saimbi CS, Gupta BP. Estimation of transmission of Porphyromonas gingivalis from mother to child through saliva. JNMA J Nepal Med Assoc. 2018;56:781–6.
doi: 10.31729/jnma.3475 pubmed: 30387469 pmcid: 8827543
Poletto AC, Singi P, Barri RM, Casanova AA, Garbelini CCD, da Silva CC, et al. Relationship of levels of trace elements in saliva and dental caries in preschool children using total reflection X-ray fluorescence technique (TXRF)⋆. J Trace Elem Med Biol. 2021;63: 126663. https://doi.org/10.1016/j.jtemb.2020.126663 .
doi: 10.1016/j.jtemb.2020.126663 pubmed: 33069944
Cao Y, Calafat AM, Doerge DR, Umbach DM, Bernbaum JC, Twaddle NC, et al. Isoflavones in urine, saliva, and blood of infants: data from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol. 2009;19:223–34. https://doi.org/10.1038/jes.2008.44 .
doi: 10.1038/jes.2008.44 pubmed: 18665197
Costa RC, Ribeiro ILA, Bonan PRF, Valença AMG. The effectiveness and acceptability of a portable pediatric sialometer: a new technique for saliva collection. Arch Oral Biol. 2020;118: 104847. https://doi.org/10.1016/j.archoralbio.2020.104847 .
doi: 10.1016/j.archoralbio.2020.104847 pubmed: 32726720
Motisuki C, Lima LM, Spolidorio DMP, Santos-Pinto L. Influence of sample type and collection method on Streptococcus mutans and Lactobacillus spp. counts in the oral cavity. Arch Oral Biol. 2005;50(3):341–5. https://doi.org/10.1016/j.archoralbio.2004.08.007 .
doi: 10.1016/j.archoralbio.2004.08.007 pubmed: 15740713
Cornejo C, Salgado P, Molgatini S, Gliosca L, Squassi A. Saliva sampling methods. Cariogenic streptococci count using two different methods of saliva collection in children. Acta Odontol Latinoam. 2022;35:51–7. https://doi.org/10.54589/aol.35/1/51 .
doi: 10.54589/aol.35/1/51 pubmed: 35700542 pmcid: 10283367
Hiremath G, Olive A, Shah S, Davis CM, Shulman RJ, Devaraj S. Comparing methods to collect saliva from children to analyze cytokines related to allergic inflammation. Ann Allergy Asthma Immunol. 2015;114(1):63–4. https://doi.org/10.1016/j.anai.2014.09.012 .
doi: 10.1016/j.anai.2014.09.012 pubmed: 25446189
Preethi BP, Reshma D, Anand P. Evaluation of flow rate, pH, buffering capacity, calcium, total proteins and total antioxidant capacity levels of saliva in caries free and caries active children: an in vivo study. Indian J Clin Biochem. 2010;25(4):425–8. https://doi.org/10.1007/s12291-010-0062-6 .
doi: 10.1007/s12291-010-0062-6 pubmed: 21966118 pmcid: 2994560
Keuning MW, Grobben M, Bijlsma MW, Anker B, Berman-de Jong EP, Cohen S, et al. Differences in systemic and mucosal SARS-CoV-2 antibody prevalence in a prospective cohort of Dutch children. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.976382 .
doi: 10.3389/fimmu.2022.976382 pubmed: 36159841 pmcid: 9500453
Lozano Moraga CP, Rodríguez Martínez GA, Lefimil Puente CA, Morales Bozo IC, Urzúa Orellana BR. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status. Acta Odontol Scand. 2017;75(1):30–5. https://doi.org/10.1080/00016357.2016.1244560 .
doi: 10.1080/00016357.2016.1244560 pubmed: 27796162
Tyrka AR, Lee JK, Graber JA, Clement AM, Kelly MM, DeRose L, et al. Neuroendocrine predictors of emotional and behavioral adjustment in boys: longitudinal follow-up of a community sample. Psychoneuroendocrinology. 2012;37(12):2042–6. https://doi.org/10.1016/j.psyneuen.2012.04.004 .
doi: 10.1016/j.psyneuen.2012.04.004 pubmed: 22575356 pmcid: 3458171
SalivaBio children’s swab (SCS) saliva collection device. Salimetrics. 2017 [cited 31 May 2023]. https://salimetrics.com/collection-method/childrens-swab-device/ .
SalivaBio infant’s swab (SIS) saliva collection device. Salimetrics. 2017 [cited 31 May 2023]. https://salimetrics.com/collection-method/infant-swab-device/ .
Granger DA, Kivlighan KT, Fortunato C, Harmon AG, Hibel LC, Schwartz EB, et al. Integration of salivary biomarkers into developmental and behaviorally-oriented research: problems and solutions for collecting specimens. Physiol Behav. 2007;92(4):583–90. https://doi.org/10.1016/j.physbeh.2007.05.004 .
doi: 10.1016/j.physbeh.2007.05.004 pubmed: 17572453
Novak D. A novel saliva collection method among children and infants: a comparison study between oral swab and pacifier-based saliva collection. J Contemp Dent Pract. 2021;22(1):9–12. https://doi.org/10.5005/jp-journals-10024-3028 .
doi: 10.5005/jp-journals-10024-3028 pubmed: 34002701
Tonge JJ, Keevil BG, Craig JN, Whitaker MJ, Ross RJ, Elder CJ. Salivary steroid collection in children under conditions replicating home sampling. J Clin Endocrinol Metab. 2022;107:3128–36. https://doi.org/10.1210/clinem/dgac419 .
doi: 10.1210/clinem/dgac419 pubmed: 35961299
Dobrescu AI, Nussbaumer-Streit B, Klerings I, Wagner G, Persad E, Sommer I, et al. Restricting evidence syntheses of interventions to English-language publications is a viable methodological shortcut for most medical topics: a systematic review. J Clin Epidemiol. 2021;137:209–17. https://doi.org/10.1016/j.jclinepi.2021.04.012 .
doi: 10.1016/j.jclinepi.2021.04.012 pubmed: 33933579
Ewald H, Klerings I, Wagner G, Heise TL, Stratil JM, Lhachimi SK, et al. Searching two or more databases decreased the risk of missing relevant studies: a metaresearch study. J Clin Epidemiol. 2022;149:154–64. https://doi.org/10.1016/j.jclinepi.2022.05.022 .
doi: 10.1016/j.jclinepi.2022.05.022 pubmed: 35654269

Auteurs

Juliette M H Fey (JMH)

Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.

Floris J Bikker (FJ)

Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.

Daniela Hesse (D)

Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands. d.hesse@acta.nl.

Classifications MeSH