Diagnostic Yield of NGS Tests for Hereditary Ataxia: a Systematic Review.
Cerebellar ataxia
Next-generation sequencing
Spinocerebellar ataxia
Targeted panels
Whole exome sequencing
Whole genome sequencing
Journal
Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443
Informations de publication
Date de publication:
11 Nov 2023
11 Nov 2023
Historique:
accepted:
30
10
2023
medline:
11
11
2023
pubmed:
11
11
2023
entrez:
10
11
2023
Statut:
aheadofprint
Résumé
Next-generation sequencing (NGS), comprising targeted panels (TP), exome sequencing (ES), and genome sequencing (GS) became robust clinical tools for diagnosing hereditary ataxia (HA). Determining their diagnostic yield (DY) is crucial for optimal clinical decision-making. We conducted a comprehensive systematic literature review on the DY of NGS tests for HA. We searched PubMed and Embase databases for relevant studies between 2016 and 2022 and manually examined reference lists of relevant reviews. Eligible studies described the DY of NGS tests in patients with ataxia as a significant feature. Data from 33 eligible studies showed a median DY of 43% (IQR = 9.5-100%). The median DY for TP and ES was 46% and 41.9%, respectively. Higher DY was associated with specific phenotype selection, such as episodic ataxia at 68.35% and early and late onset of ataxia at 46.4% and 54.4%. Parental consanguinity had a DY of 52.4% (p = 0.009), and the presumed autosomal recessive (AR) inheritance pattern showed 62.5%. There was a difference between the median DY of studies that performed targeted sequencing (tandem repeat expansion, TRE) screening and those that did not (p = 0.047). A weak inverse correlation was found between DY and the extent of previous genetic investigation (rho = - 0.323; p = 0.065). The most common genes were CACNA1A and SACS. DY was higher for presumed AR inheritance pattern, positive family history, and parental consanguinity. ES appears more advantageous due to the inclusion of rare genes that might be excluded in TP.
Identifiants
pubmed: 37950147
doi: 10.1007/s12311-023-01629-y
pii: 10.1007/s12311-023-01629-y
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31(4):462–71. https://doi.org/10.1097/WCO.0000000000000585 .
doi: 10.1097/WCO.0000000000000585
pubmed: 29847346
Novis LE, Spitz M, Jardim M, Raskin S, Teive HAG. Evidence and practices of the use of next generation sequencing in patients with undiagnosed autosomal dominant cerebellar ataxias: a review. Arq Neuropsiquiatr. 2020;78(9):576–85. https://doi.org/10.1590/0004-282X20200017 .
doi: 10.1590/0004-282X20200017
pubmed: 32725052
Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94. https://doi.org/10.1016/S1474-4422(10)70183-6 .
doi: 10.1016/S1474-4422(10)70183-6
pubmed: 20723845
Coarelli G, Wirth T, Tranchant C, Koenig M, Durr A, Anheim M. The inherited cerebellar ataxias: an update. J Neurol. 2023;270(1):208–22. https://doi.org/10.1007/s00415-022-11383-6 .
doi: 10.1007/s00415-022-11383-6
pubmed: 36152050
Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, Yoon G, Rouleau GA, Suchowersky O, Siu V, Murphy L, Hegele RA, Marshall CR, FORGE Canada Consortium, Bulman DE, Majewski J, Tarnopolsky M, Boycott KM. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014;35(1):45–9. https://doi.org/10.1002/humu.22451 .
doi: 10.1002/humu.22451
pubmed: 24108619
Krygier M, Kwarciany M, Wasilewska K, Pienkowski VM, Krawczyńska N, Zielonka D, Kosińska J, Stawinski P, Rudzińska-Bar M, Boczarska-Jedynak M, Karaszewski B, Limon J, Sławek J, Płoski R, Rydzanicz M. A study in a Polish ataxia cohort indicates genetic heterogeneity and points to MTCL1 as a novel candidate gene. Clin Genet. 2019;95(3):415–9. https://doi.org/10.1111/cge.13489 .
doi: 10.1111/cge.13489
pubmed: 30548255
Weiss MM, Van der Zwaag B, Jongbloed JD, Vogel MJ, Brüggenwirth HT, Lekanne Deprez RH, Mook O, Ruivenkamp CA, van Slegtenhorst MA, van den Wijngaard A, Waisfisz Q, Nelen MR, van der Stoep N. Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat. 2013;34(10):1313–21. https://doi.org/10.1002/humu.22368 .
doi: 10.1002/humu.22368
pubmed: 23776008
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30 .
doi: 10.1038/gim.2015.30
pubmed: 25741868
pmcid: 4544753
Kim M, Kim AR, Kim JS, et al. Clarification of undiagnosed ataxia using whole-exome sequencing with clinical implications. Parkinsonism Relat Disord. 2020;80:58–64. https://doi.org/10.1016/j.parkreldis.2020.08.040 .
doi: 10.1016/j.parkreldis.2020.08.040
pubmed: 32961395
Montaut S, Tranchant C, Drouot N, et al. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. 2018;75(10):1234–45. https://doi.org/10.1001/jamaneurol.2018.1478 .
doi: 10.1001/jamaneurol.2018.1478
pubmed: 29913018
pmcid: 6233854
Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1–8. https://doi.org/10.1007/s10048-017-0532-6 .
doi: 10.1007/s10048-017-0532-6
pubmed: 29209898
Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919 .
doi: 10.1136/bmj.i4919
pubmed: 27733354
pmcid: 5062054
Maksemous N, Roy B, Smith RA, Griffiths LR. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol Genet Genomic Med. 2016;4(2):211–22. https://doi.org/10.1002/mgg3.196 .
doi: 10.1002/mgg3.196
pubmed: 27066515
pmcid: 4799871
Maksemous N, Sutherland HG, Smith RA, Haupt LM, Griffiths LR. Comprehensive exonic sequencing of known ataxia genes in episodic ataxia. Biomedicines. 2020;8(5):134. https://doi.org/10.3390/biomedicines8050134 .
doi: 10.3390/biomedicines8050134
pubmed: 32466254
pmcid: 7277596
Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, Hannequin D, Melki J, Toutain A, Laugel V, Forlani S, Charles P, Broussolle E, Thobois S, Afenjar A, et al. Spastic Paraplegia and Ataxia Network. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591–9. https://doi.org/10.1001/jamaneurol.2017.5121 .
doi: 10.1001/jamaneurol.2017.5121
pubmed: 29482223
pmcid: 5885259
Santos M, Damásio J, Carmona S, Neto JL, Dehghani N, Guedes LC, Barbot C, Barros J, Brás J, Sequeiros J, Guerreiro R. Molecular characterization of Portuguese patients with hereditary cerebellar ataxia. Cells. 2022;11(6):981. https://doi.org/10.3390/cells11060981 .
doi: 10.3390/cells11060981
pubmed: 35326432
pmcid: 8946949
Radziwonik W, Elert-Dobkowska E, Klimkowicz-Mrowiec A, Ziora-Jakutowicz K, Stepniak I, Zaremba J, Sulek A. Application of a custom NGS gene panel revealed a high diagnostic utility for molecular testing of hereditary ataxias. J Appl Genet. 2022;63(3):513–25. https://doi.org/10.1007/s13353-022-00701-3 .
doi: 10.1007/s13353-022-00701-3
pubmed: 35588347
Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18. https://doi.org/10.1093/brain/awt236 .
doi: 10.1093/brain/awt236
pubmed: 24030952
pmcid: 3784284
Wan N, Chen Z, Wan L, Yuan H, Tang Z, Liu M, Peng Y, Peng L, Lei L, Xie Y, Deng Q, Wang S, Wang C, Peng H, Hou X, Shi Y, Long Z, Qiu R, Xia K, et al. Genetic etiology of a Chinese ataxia cohort: expanding the mutational spectrum of hereditary ataxias. Parkinsonism Relat Disord. 2021;89:120–7. https://doi.org/10.1016/j.parkreldis.2021.07.010 .
doi: 10.1016/j.parkreldis.2021.07.010
pubmed: 34284285
Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017;88:301–9.
doi: 10.1136/jnnp-2016-314863
pubmed: 27965395
Kang C, Liang C, Ahmad KE, et al. High degree of genetic heterogeneity for hereditary cerebellar ataxias in Australia. Cerebellum. 2019;18:137–46. https://doi.org/10.1007/s12311-018-0969-7 .
doi: 10.1007/s12311-018-0969-7
pubmed: 30078120
da Graça FF, Peluzzo TM, Bonadia LC, Martinez ARM, Diniz de Lima F, Pedroso JL, Barsottini OGP, Gama MTD, Akçimen F, Dion PA, Rouleau GA, Marques W Jr, França MC Jr. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum. 2022;21(1):49–54. https://doi.org/10.1007/s12311-021-01268-1 .
doi: 10.1007/s12311-021-01268-1
pubmed: 33956305
Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener. 2021;10(1):40. https://doi.org/10.1186/s40035-021-00264-z .
doi: 10.1186/s40035-021-00264-z
pubmed: 34663476
pmcid: 8522248
Sun M, Johnson AK, Nelakuditi V, Guidugli L, Fischer D, Arndt K, Ma L, Sandford E, Shakkottai V, Boycott K, Warman-Chardon J, Li Z, Del Gaudio D, Burmeister M, Gomez CM, Waggoner DJ, Das S. Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med. 2019;21(1):195–206. https://doi.org/10.1038/s41436-018-0007-7 .
doi: 10.1038/s41436-018-0007-7
pubmed: 29915382
Gauquelin L, Hartley T, Tarnopolsky M, Dyment DA, Brais B, Geraghty MT, Tétreault M, Ahmed S, Rojas S, Choquet K, Majewski J, Bernier F, Innes AM, Rouleau G, Suchowersky O, Boycott KM, Yoon G. Channelopathies are a frequent cause of genetic ataxias associated with cerebellar atrophy. Mov Disord Clin Pract. 2020;7(8):940–9. https://doi.org/10.1002/mdc3.13086 .
doi: 10.1002/mdc3.13086
pubmed: 33163565
pmcid: 7604675
Perez Maturo J, Zavala L, Vega P, González-Morón D, Medina N, Salinas V, Rosales J, Córdoba M, Arakaki T, Garretto N, Rodríguez-Quiroga S, Kauffman MA. Overwhelming genetic heterogeneity and exhausting molecular diagnostic process in chronic and progressive ataxias: facing it up with an algorithm, a gene, a panel at a time. J Hum Genet. 2020;65(10):895–902. https://doi.org/10.1038/s10038-020-0785-z .
doi: 10.1038/s10038-020-0785-z
pubmed: 32488064
Valence S, Cochet E, Rougeot C, Garel C, Chantot-Bastaraud S, Lainey E, Afenjar A, Barthez MA, Bednarek N, Doummar D, Faivre L, Goizet C, Haye D, Heron B, Kemlin I, Lacombe D, Milh M, Moutard ML, Riant F, et al. Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genet Med. 2019;21(3):553–63. https://doi.org/10.1038/s41436-018-0089-2 .
doi: 10.1038/s41436-018-0089-2
pubmed: 29997391
da Costa SCG, Rezende Filho FM, de Freitas JL, de Assis Pereira Matos PCA, Della-Ripa B, França MC Jr, Junior MW, Santos M, IVB C, Vale TC, Kok F, Alonso I, Pedroso JL, OGP B. Clinical and genetic characterization of Brazilian patients with ataxia and oculomotor apraxia. Mov Disord. 2022;37(6):1309–16. https://doi.org/10.1002/mds.29015 .
doi: 10.1002/mds.29015
pubmed: 35426160
Choi KD, Kim JS, Kim HJ, Jung I, Jeong SH, Lee SH, Kim DU, Kim SH, Choi SY, Shin JH, Kim DS, Park KP, Kim HS, Choi JH. Genetic variants associated with episodic ataxia in Korea. Sci Rep. 2017;7(1):13855. https://doi.org/10.1038/s41598-017-14254-7 .
doi: 10.1038/s41598-017-14254-7
pubmed: 29062094
pmcid: 5653837
Mutlu-Albayrak H, Kırat E, Gürbüz G. Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey. Neurogenetics. 2020;21(1):59–66. https://doi.org/10.1007/s10048-019-00597-y .
doi: 10.1007/s10048-019-00597-y
pubmed: 31741144
Ignatius E, Isohanni P, Pohjanpelto M, Lahermo P, Ojanen S, Brilhante V, Palin E, Suomalainen A, Lönnqvist T, Carroll CJ. Genetic background of ataxia in children younger than 5 years in Finland. Neurol Genet. 2020;6(4):e444. https://doi.org/10.1212/NXG.0000000000000444 .
doi: 10.1212/NXG.0000000000000444
pubmed: 32637629
pmcid: 7323479
Shakya S, Kumari R, Suroliya V, Tyagi N, Joshi A, Garg A, Singh I, Kalikavil Puthanveedu D, Cherian A, Mukerji M, Srivastava AK, Faruq M. Whole exome and targeted gene sequencing to detect pathogenic recessive variants in early onset cerebellar ataxia. Clin Genet. 2019;96(6):566–74. https://doi.org/10.1111/cge.13625 .
doi: 10.1111/cge.13625
pubmed: 31429931
Arslan EA, Öncel İ, Ceylan AC, Topçu M, Topaloğlu H. Genetic and phenotypic features of patients with childhood ataxias diagnosed by next-generation sequencing gene panel. Brain Dev. 2020;42(1):6–18. https://doi.org/10.1016/j.braindev.2019.08.004 .
doi: 10.1016/j.braindev.2019.08.004
pubmed: 31493945
Ngo KJ, Rexach JE, Lee H, Petty LE, Perlman S, Valera JM, Deignan JL, Mao Y, Aker M, Posey JE, Jhangiani SN, Coban-Akdemir ZH, Boerwinkle E, Muzny D, Nelson AB, Hassin-Baer S, Poke G, Neas K, Geschwind MD, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020;41(2):487–501. https://doi.org/10.1002/humu.23946 .
doi: 10.1002/humu.23946
pubmed: 31692161
Bogdanova-Mihaylova P, Hebert J, Moran S, Murphy M, Ward D, Walsh RA, Murphy SM. Inherited cerebellar ataxias: 5-year experience of the Irish National Ataxia Clinic. Cerebellum. 2021;20(1):54–61. https://doi.org/10.1007/s12311-020-01180-0 .
doi: 10.1007/s12311-020-01180-0
pubmed: 32816195
Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, Quintero-Rivera F, Vilain E, Grody WW, Perlman S, Geschwind DH, Nelson SF. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71(10):1237–46. https://doi.org/10.1001/jamaneurol.2014.1944 . Erratum in: JAMA Neurol. 2015 Jan;72(1):128
doi: 10.1001/jamaneurol.2014.1944
pubmed: 25133958
pmcid: 4324730
Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, Douroudis K, Pfeffer G, Santibanez-Koref M, Eglon G, Yu-Wai-Man P, Ramesh V, Horvath R, Chinnery PF. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138(Pt 2):276–83. https://doi.org/10.1093/brain/awu348 .
doi: 10.1093/brain/awu348
pubmed: 25497598
Vural A, Şimşir G, Tekgül Ş, Koçoğlu C, Akçimen F, Kartal E, Şen NE, Lahut S, Ömür Ö, Saner N, Gül T, Bayraktar E, Palvadeau R, Tunca C, Pirkevi Çetinkaya C, Gündoğdu Eken A, Şahbaz I, Kovancılar Koç M, Öztop Çakmak Ö, et al. The complex genetic landscape of hereditary ataxias in Turkey and implications in clinical practice. Mov Disord. 2021;36(7):1676–88. https://doi.org/10.1002/mds.28518 .
doi: 10.1002/mds.28518
pubmed: 33624863
Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC Med Genet. 2015;16:36. https://doi.org/10.1186/s12881-015-0180-3 .
doi: 10.1186/s12881-015-0180-3
pubmed: 26068213
pmcid: 4630839
Balakrishnan S, Aggarwal S, Muthulakshmi M, Meena AK, Borgohain R, Mridula KR, Yareeda S, Ranganath P, Dalal A. Clinical and molecular spectrum of degenerative cerebellar ataxia: a single centre study. Neurol India. 2022;70(3):934–42. https://doi.org/10.4103/0028-3886.349660 .
doi: 10.4103/0028-3886.349660
pubmed: 35864621
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, Valter R, Anheim M, Behin A, Castelnovo G, Charles P, David A, Ewenczyk C, Fradin M, Goizet C, Hannequin D, Labauge P, Riant F, Sarda P, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140(6):1579–94. https://doi.org/10.1093/brain/awx081 .
doi: 10.1093/brain/awx081
pubmed: 28444220
Dong HL, Ma Y, Li QF, Du YC, Yang L, Chen S, Wu ZY. Genetic and clinical features of Chinese patients with mitochondrial ataxia identified by targeted next-generation sequencing. CNS Neurosci Ther. 2019;25(1):21–9. https://doi.org/10.1111/cns.12972 .
doi: 10.1111/cns.12972
pubmed: 29756269
Sanford Kobayashi E, et al. Approaches to long-read sequencing in a clinical setting to improve diagnostic rate. Scientific Reports. 2022;12(1):16945. https://doi.org/10.1038/s41598-022-20113-x .