Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions.

3D printers QSAR modeling additive manufacturing lung cancer ultrafine particles

Journal

Journal of applied toxicology : JAT
ISSN: 1099-1263
Titre abrégé: J Appl Toxicol
Pays: England
ID NLM: 8109495

Informations de publication

Date de publication:
Apr 2024
Historique:
revised: 18 10 2023
received: 01 09 2023
accepted: 19 10 2023
pubmed: 11 11 2023
medline: 11 11 2023
entrez: 11 11 2023
Statut: ppublish

Résumé

The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m

Identifiants

pubmed: 37950573
doi: 10.1002/jat.4561
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

564-581

Subventions

Organisme : National Institute of Environmental Health Sciences of the National Institutes of Health
ID : R44ES030650
Organisme : USACE Engineer Research and Development Center Environmental Laboratory
ID : W912HZ21C0061
Organisme : Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth)
Organisme : National Science Foundation (NSF)
ID : ECCS 2025151
Organisme : National Science Foundation (NSF)
ID : ECCS 1542100

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Agency for Toxic Substances and Disease Registry (ATSDR). (2019). Toxicological profile for silica. ATSDR Silica Tox Profile (cdc.gov).
American Cancer Society (ACS). (2023). Lifetime risk of developing or dying from lung cancer. American Cancer Society. Lifetime probability of developing and dying from cancer, 2017-2019 (Cancer Facts & Figures 2023 supplemental data). Retrieved January 12, 2023, from https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-andstatistics/annual-cancer-facts-and-figures/2023/sd4-lifetime-probability-2023-cff.pdf
Asgharian, B., Price, O. T., Oldham, M., Chen, L. C., Saunders, E. L., Gordon, T., & Teeguarden, J. G. (2014). Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhalation Toxicology, 26(14), 829-842. https://doi.org/10.3109/08958378.2014.935535
Azimi, P., Zhao, D., Pouzet, C., Crain, N. E., & Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science & Technology, 50(3), 1260-1268. https://doi.org/10.1021/acs.est.5b04983
Barratt, M. D. (2000). Prediction of toxicity from chemical structure. Cell Biology and Toxicology, 16(1), 1-13. https://doi.org/10.1023/a:1007676602908
Battal, D., Çelik, A., Güler, G., Aktaş, A., Yildirimcan, S., Ocakoglu, K., & Çömelekoǧlu, Ü. (2015). SiO2 Nanoparticule-induced size-dependent genotoxicity - an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug and Chemical Toxicology, 38(2), 196-204. https://doi.org/10.3109/01480545.2014.928721
Becker, H., Herzberg, F., Schulte, A., & Kolossa-Gehring, M. (2011). The carcinogenic potential of nanomaterials, their release from products and options for regulating them. International Journal of Hygiene and Environmental Health, 214(3), 231-238. https://doi.org/10.1016/j.ijheh.2010.11.004
Bodor, K., Szép, R., & Bodor, Z. (2022). The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Environmental Science, Toxicology Reports, 9, 556-562. https://doi.org/10.1016/j.toxrep.2022.03.02
Borm, P. J. A., Fowler, P., & Kirkland, D. (2018). An updated review of the genotoxicity of respirable crystalline silica. Particle and Fibre Toxicology, 15, 23. https://doi.org/10.1186/s12989-018-0259-z
Brits, E., Schoeters, G., & Verschaeve, L. (2004). Genotoxicity of PM10 and extracted organics collected in an industrial, urban and rural area in Flanders, Belgium. Environmental Research, 96(2), 109-118. https://doi.org/10.1016/j.envres.2004.03.006
Buchman, J. T., Hudson-Smith, N., Landy, K. M., & Haynes, C. L. (2019). Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Accounts of Chemical Research, 52(6), 1632-1642. https://doi.org/10.1021/acs.accounts.9b00053
Byrley, P., Boyes, W. K., Rogers, K., & Jarabek, A. M. (2021). 3D printer particle emissions: Translation to internal dose in adults and children. Journal of Aerosol Science, 154, 1-12. https://doi.org/10.1016/j.jaerosci.2021.105765
Byrley, P., Geer Wallace, M. A., Boyes, W. K., & Rogers, K. (2020). Particle and volatile organic compound emissions from a 3D printer filament extruder. The Science of the Total Environment, 736, 139604. https://doi.org/10.1016/j.scitotenv.2020.139604
Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Lawson Crouse, D., & Tjepkema, M. (2018). Associations between long-term PM2.5 and ozone exposure and mortality in the Canadian census health and environment cohort (CANCHEC), by spatial synoptic classification zone. Environment International, 111, 200-211. https://doi.org/10.1016/j.envint.2017.11.030
Carriere, M., Arnal, M.-E., & Douki, T. (2020). Tio2 genotoxicity: An update of the results published over the last six years. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 854-855, 503198. https://doi.org/10.1016/j.mrgentox.2020.503198
Caster, J. M., Yu, S. K., Patel, A. N., Newman, N. J., Lee, Z. J., Warner, S. B., Wagner, K. T., Roche, K. C., Tian, X., Min, Y., & Wang, A. Z. (2017). Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles in chemoradiotherapy. Nanomedicine 2017, 13(5), 1673-1683. https://doi.org/10.1016/j.nano.2017.03.002
Cesaroni, G., Badaloni, C., Gariazzo, C., Stafoggia, M., Sozzi, R., Davoli, M., & Forastiere, F. (2013). Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environmental Health Perspectives, 121(3), 324-331. https://doi.org/10.1289/ehp.1205862
Chen, J., & Hoek, G. (2020). Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environmental International, 143, 105974. https://doi.org/10.1016/j.envint.2020.105974
Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., & Chen, C. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(12), 2844-2855. https://doi.org/10.1016/j.bbagen.2016.03.019
Davis, A. Y., Zhang, Q., Wong, J. P. S., Weber, R. J., & Black, M. S. (2019). Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Building and Environment, 160, 106209. https://doi.org/10.1016/j.buildenv.2019.106209
Di Ianni, E., Erdem, J. S., Møller, P., Sahlgren, N. M., Poulsen, S. S., Knudsen, K. B., Zienolddiny, S., Saber, A. T., Wallin, H., Vogel, U., & Jacobsen, N. R. (2021). In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Particle and Fibre Toxicology, 18, 25. https://doi.org/10.1186/s12989-021-00413-2
Dobrovolskaia, M. A., Shurin, M., & Shvedova, A. A. (2016). Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 299, 78-89. https://doi.org/10.1016/j.taap.2015.12.022
Donaldson, K., Stone, V., Gilmour, P. S., Brown, D. M., & MacNee, W. (2003). Ultrafine particles: Mechanisms of lung injury. Ultrafine Particles in the Atmosphere, 231-242. https://doi.org/10.1142/9781848161221_0013
Dybdahl, M., Risom, L., Bornholdt, J., Autrup, H., Loft, S., & Wallin, H. (2004). Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 562(1-2), 119-131. https://doi.org/10.1016/j.mrgentox.2004.05.010
Facciolà, A., Visalli, G., Pruiti Ciarello, M., & Di Pietro, A. (2021). Newly emerging airborne pollutants: Current knowledge of health impact of micro and nanoplastics. International Journal of Environmental Research and Public Health, 18(6), 2997. https://doi.org/10.3390/ijerph18062997
Farcas, M. T., Stefaniak, A. B., Knepp, A. K., Bowers, L., Mandler, W. K., Kashon, M., Jackson, S. R., Stueckle, T. A., Sisler, J. D., Friend, S. A., Qi, C., Hammond, D. R., Thomas, T. A., Matheson, J., Castranova, V., & Qian, Y. (2019). Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicology Letters, 317, 1-12. https://doi.org/10.1016/j.toxlet.2019.09.013
Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67-74. https://doi.org/10.1016/j.ecoenv.2016.01.030
Fox, J. R., Cox, D. P., Drury, B. E., Gould, T. R., Kavanagh, T. J., Paulsen, M. H., Sheppard, L., Simpson, C. D., Stewart, J. A., Larson, T. V., & Kaufman, J. D. (2014). Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. Air Quality, Atmosphere and Health, 8(5), 507-519. https://doi.org/10.1007/s11869-014-0301-8
Greene, N. A., & Morris, V. R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. International Journal of Environmental Research and Public Health, 3(1), 86-97. https://doi.org/10.3390/ijerph2006030010
Gu, S., Bull, A., Perry, J. K., Huang, A., Hourwitz, M. J., Abostate, M., Fourkas, J. T., Korchevskiy, A. A., Wylie, A. G., & Losert, W. (2023). Excitable systems: A new perspective on the cellular impact of elongate mineral particles. Environmental Research, 230, 115353. https://doi.org/10.1016/j.envres.2023.115353
Gümperlein, I., Fischer, E., Dietrich-Gümperlein, G., Karrasch, S., Nowak, D., Jorres, R. A., & Schierl, R. (2018). Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers. Indoor Air, 28(4), 611-623. https://doi.org/10.1111/ina.12458
Guo, H., Li, X., Wei, J., Li, W., Wu, J., & Zhang, Y. (2022). Smaller particular matter, larger risk of female lung cancer incidence? Evidence from 436 Chinese counties. BMC Public Health, 22, 344. https://doi.org/10.1186/s12889-022-12622-1
Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., Vineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., & Loomis, D. (2014). Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environmental Health Perspectives, 122(9), 906-911. https://doi.org/10.1289/ehp/1408092
Hikisz, P., & Jacenik, D. (2023). The tobacco smoke component, Acrolein, as a major culprit in lung diseases and respiratory cancers: Molecular mechanisms of Acrolein cytotoxic activity. Cell, 12(6), 879. https://doi.org/10.3390/cells12060879
Hill, W. C., Seitz, D. W., Hull, M. S., Ballentine, M. L., & Kennedy, A. J. (2022). Additives influence 3D printer emission profiles: Implications for working safely with polymer filament composites. Indoor Air, 32(10), e13130. https://doi.org/10.1111/ina.13130
Huang, Y., Zhu, M., Ji, M., Fan, J., Xie, J., Wei, X., Jiang, X., Xu, J., Chen, L., Yin, R., Wang, Y., Dai, J., Jin, G., Xu, L., Hu, Z., Ma, H., & Shen, H. (2021). Air pollution, genetic factors, and the risk of lung cancer: A prospective study in the UK biobank. American Journal of Respiratory and Critical Care Medicine, 204(7), 817-825. https://doi.org/10.1164/rccm.2022011-4063OC
Huang, Y.-J., Lee, P.-H., Chen, L.-C., Lin, B.-C., Lin, C., & Chan, T.-C. (2022). Relationships among green space, ambient fine particulate matter, and cancer incidence in Taiwan: A 16-year retrospective cohort study. Environmental Research, 212(Part C), 113416. https://doi.org/10.1016/j.envres.2022.113416
Huff, J. (2002). Chemicals studied and evaluated in long-term carcinogenesis bioassays by both the Ramazzini Foundation and the National Toxicology Program: In tribute to Cesare Maltoni and David Rall. Annals of the New York Academy of Sciences, 982, 208-230. https://doi.org/10.1111/j.1749-6632.2002.tb04935.x
International Agency for Research on Cancer (IARC). (2015). Outdoor air pollution. In IARC monographs on the evaluation of carcinogenic risks to humans (Vol. 109). ISBN-13: 978-92-832-0147-2. ISBN-13:978-92-832-0175-5.
International Agency for Research on Cancer (IARC). (2018). Styrene, Styrene 7,8-oxide, and Quinoline. In IARC monographs on the identification of carcinogenic hazards to humans (Vol. 121). ISBN-13: 978-92-832-0159-5. ISBN-13: 978-92832-0188-5.
International Agency for Research on Cancer (IARC). (2021). Acrolein, crotonaldehyde, and arecoline. In IARC monographs on the identification of carcinogenic hazards to humans (Vol. 128). ISBN-13: 9789283201687 (paperback). ISBN-13: 9789283201953 (pdf).
Jain, P. K., & Jain, P. K. (2021). Use of 3D printing for home applications: A new generation concept. MaterialsToday: Proceedings, 43(Part 1), 605-607. https://doi.org/10.1016/j.matpr.2020.12.145
Kangas, A., Kukko, K., Kanerva, T., Säämänen, A., Akmal, J. S., Partanen, J., & Viitanen, A.-K. (2023). Workplace exposure measurements of emission from industrial 3D printing. Annals of Work Exposures and Health, 67(5), 596-608. https://doi.org/10.1093/annweh/wxad006
Kansara, K., Patel, P., Shah, D., Shukla, R. K., Singh, S., Kumar, A., & Dhawan, A. (2014). Tio2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environmental and Molecular Mutagenesis, 56(2), 204-217. https://doi.org/10.1002/em.21925
Kasai, T., Umeda, Y., Ohnishi, M., Mine, T., Kondo, H., Takeuchi, T., Matsumoto, M., & Fukushima, S. (2016). Lung carcinogenicity of inhaled multi-walled carbon nanotubes in rats. Particle and Fibre Toxicology, 13(53), 53. https://doi.org/10.1186/s12989-016-0164-2
Kim, D. H., Lee, H., Hwangbo, H., Kim, S. Y., Ji, S. Y., Kim, M. Y., Park, S.-K., Park, S.-H., Kim, M.-Y., Kim, G.-Y., Cheong, J., Nam, S.-W., & Choi, Y. H. (2022). Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutaneous and Ocular Toxicology, 41(4), 273-284. https://doi.org/10.1080/15569527.2022.2122489
Klompmaker, J. O., Hoek, G., Bloemsma, L. D., Marra, M., Wijga, A. H., van den Brink, C., Brunekreef, B., Lebret, E., Gehring, U., & Janssen, N. A. H. (2020). Surrounding green, air pollution, traffic noise exposure and non-accidental and cause-specific mortality. Environment International, 134, 105341. https://doi.org/10.1016/j.envint.2019.105341
Kobayashi, N., Naya, M., Endoh, S., Maru, J., Yamamoto, K., & Nakanishi, J. (2009). Comparative pulmonary toxicity study of nano-tio2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results. Toxicology, 264(1-2), 110-118. https://doi.org/10.1016/j.tox.2009.08.002
Korchevskiy, A. (2020). Using benchmark dose modeling for the quantitative risk assessment: Carbon nanotubes, asbestos, glyphosate. Journal of Applied Toxicology, 41(1), 148-160. https://doi.org/10.1002/jat.4063
Korchevskiy, A., Rasmuson, J. O., & Rasmuson, E. J. (2019). Empirical model of mesothelioma potency factors for different mineral fibers based on their chemical composition and dimensionality. Inhalation Toxicology, 31(5), 180-191. https://doi.org/10.1080/08958378.2019.1640320
Korchevskiy, A. A., & Wylie, A. G. (2022a). Asbestos exposure, lung fiber burden, and mesothelioma rates: Mechanistic modelling for risk assessment. Computational Toxicology, 24, 100249. https://doi.org/10.1016/j.comtox.2022.100249
Korchevskiy, A. A., & Wylie, A. G. (2022b). Dimensional characteristics of the major types of amphibole mineral particles and the implications for carcinogenic risk assessment. Inhalation Toxicology, 34(1-2), 24-38. https://doi.org/10.1080/08958378.2021.2024304
Korchevskiy, A. A., & Wylie, A. G. (2023). Toxicological and epidemiological approaches to carcinogenic potency modeling for mixed mineral fiber exposure: The case of fibrous balangeroite and chrysotile. Inhalation Toxicology, 35(7-8), 185-200. https://doi.org/10.1080/08958378.2023.2213720
Lee, S.-H., Lee, P.-H., Liang, H.-J., Tang, C.-H., Chen, T.-F., Cheng, T.-J., & Lin, C.-Y. (2020). Brain lipid profiles in the spontaneously hypertensive rat after subchronic real-world exposure to ambient fine particulate matter. Science of the Total Environment, 707, 135603. https://doi.org/10.1016/j.scitotenv.2019.135603
Liao, C. M., Chio, C. P., Chen, W. Y., Ju, Y. R., Li, W. H., Cheng, Y.-H., Liao, V. H.-C., Chen, S.-C., & Ling, M.-P. (2011). Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. Journal of Hazardous Materials, 190(1-3), 150-158. https://doi.org/10.1016/j.jhazmat.2011.03.017
Liu, B., Campo, E. M., & Bossing, T. (2014). Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PLoS ONE, 9(2), e88681. https://doi.org/10.1371/journal.pone.0088681
Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196-204. https://doi.org/10.1016/j.envres.2014.06.029
Machaczka, O., Jirik, V., Brezinova, V., Vrtkova, A., Miturova, H., Riedlova, P., Dalecka, A., Hermanova, B., Slachtova, H., Siemiatkowski, G., Osrodka, L., & Sram, R. J. (2021). Evaluation of fine and ultrafine particles proportion in airborne dust in an industrial area. International Journal of Environmental Research and Public Health, 18(17), 8915. https://doi.org/10.3390/ijerph18178915
Mercer, T. T. (1975). Role of particle size in the evaluation of uranium hazards. University of Rochester, NY; Energy Research and Development Administration. Report: ERDA-93; CONF-750445. 4086760 (osti.gov).
Miettinen, M., Riikonen, J., Tapper, U., Backman, U., Joutsensaari, J., Auvinen, A., Lehto, V. P., & Jokiniemi, J. (2009). Development of a highly controlled gas-phase nanoparticle generator for inhalation exposure studies. Human & Experimental Toxicology, 28(6-7), 413-419. https://doi.org/10.1177/0960327109105155
National Institute for Occupational Safety and Health (NIOSH). (2011). Current intelligence bulletin 63: Occupational exposure to titanium dioxide (pp. 2011-2160).
Oberdörster, G. (2000). Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health, 74, 1-8. https://doi.org/10.1007/s004200000185
Occupational Safety and Health Administration (OSHA). (2010). Occupational exposure to respirable crystalline silica - Review of health effects literature and preliminary quantitative risk assessment. Docket OSHA-2010-0034.
OECD. (2014). Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. In OECD series on testing and assessment (Vol. 69). OECD Publishing. https://doi.org/10.1787/9789264085442-en
Oller, A. R., & Oberdörster, G. (2016). Incorporation of dosimetry in the derivation of reference concentrations for ambient or workplace air: A conceptual approach. Journal of Aerosol Science, 99, 40-45. https://doi.org/10.1016/j.jaerosci.2016.01.015
Pelley, J. (2018). Safety standards aim to rein in 3-D printer emissions. ACS Central Science, 4(2), 134-136. https://doi.org/10.1021/acscentsci.8b00090
Phalen, R. F. (2004). The particulate air pollution controversy. Nonlinearity in Biology, Toxicology, and Medicine, 2(4), 259-292. https://doi.org/10.1080/15401420490900245
Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., & Nunziata, A. (2009). Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology, 261(1-2), 1-8. https://doi.org/10.1016/j.tox.2009.04.035
Pope, C. A. III, Lefler, J. S., Ezzati, M., Higbee, J. D., Marshall, J. D., Kim, S.-Y., Bechle, M., Gilliat, K. S., Vernon, S. E., Robinson, A. L., & Burnett, R. T. (2019). Mortality risk and fine particulate air pollution in a large, representative cohort of U.S. adults. Environmental Health Perspectives, 127(7), 77007. https://doi.org/10.1289/EHP4438
Priyankara, S., Senarathna, M., Jayaratne, R., Morawska, L., Abeysundara, S., Weerasooriya, R., Knibbs, L. D., Dharmage, S. C., Yasaratne, D., & Bowatte, G. (2021). Ambient PM2.5 and PM10 exposure and respiratory disease hospitalization in Kandy, Sri Lanka. International Journal of Environmental Research and Public Health, 18(18), 9617. https://doi.org/10.3390/ijerph18189617
Raaschou-Nielsen, O., Thorsteinson, E., Antonsen, S., Holst, G. J., Sigsgaard, T., Geels, C., Frohn, L. M., Christensen, J. H., Brandt, J., Pedersen, C. B., & Hvidtfeldt, U. A. (2020). Long-term exposure to air pollution and mortality in the Danish population a nationwide study. EClinicalMedicine, 28, 100605. https://doi.org/10.1016/j.eclinm.2020.100605
Rojek, I., Mikołajewski, D., Macko, M., Szczepański, Z., & Dostatni, E. (2021). Optimization of extrusion-based 3D printing process using neural networks for sustainable development. Materials (Basel, Switzerland)., 14(11), 2737. https://doi.org/10.3390/ma14112737
Sager, T. M., Kommineni, C., & Castranova, V. (2008). Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: Role of particle surface area. Particle and Fibre Toxicology, 5(1), 17. https://doi.org/10.1186/1743-8977-5-17
Schraufnagel, D. E. (2020). The health effects of ultrafine particles. Experimental & Molelcular Medicine, 52, 311-317. https://doi.org/10.1038/s12276-020-0403-3
Schwarze, P. E., Øvrevik, J., Hetland, R. B., Becher, R., Cassee, F. R., Låg, M., Løvik, M., Dybing, E., & Refsnes, M. (2007). Importance of size and composition of particles for effects on cells in vitro. Inhalation Toxicology, 19(Suppl 1), 17-22. https://doi.org/10.1080/08958370701490445
Sergent, J.-A., Paget, V., & Chevillard, S. (2012). Toxicity and genotoxicity of nano-SIO2 on human epithelial intestinal HT-29 cell line. The Annals of Occupational Hygiene, 56(5), 622-630. https://doi.org/10.1093/annhyg/mes005
Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089
Shin, M., Kim, O.-J., Yang, S., Choe, S.-A., & Kim, S. Y. (2022). Different mortality risks of long-term exposure to particulate matter across different cancer sites. International Journal of Environmental Research and Public Health, 19(6), 3180. https://doi.org/10.3390/ijerph19063180
Shin, W.-Y., Kim, J.-H., Lee, G., Choi, S., Kim, S. R., Hong, Y.-C., & Park, S. M. (2020). Exposure to ambient fine particulate matter is associated with changes in fasting glucose and lipid profiles: A nationwide cohort study. BMC Public Health, 20, 430. https://doi.org/10.1186/s12889-020-08503-0
Silverman, D. T. (2018). Diesel exhaust and lung cancer-Aftermath of becoming an IARC Group 1 carcinogen. American Journal of Epidemiology, 187(6), 1149-1152. https://doi.org/10.1093/aje/kwy036
So, R., Andersen, Z. J., Chen, J., Stafoggia, M., de Hoogh, K., Katsouyanni, K., et al. (2022). Long-term exposure to air pollution and mortality in a Danish nationwide administrative cohort study: Beyond mortality from cardiopulmonary disease and lung cancer. Environmental International, 164, 107241.
Stafoggia, M., Oftedal, B., Chen, J., Rodopoulou, S., Renzi, M., & Atkinson, R. W. (2022). Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: Results from seven large European cohorts within the ELAPSE project. Lancet Planet Health, 6(1), 9-18. https://doi.org/10.1016/S2542-5196(21)00277-1
Stefaniak, A. B., LeBouf, R. F., Duling, M. G., Yi, J., Abukabda, A. B., McBride, C. R., & Nurkiewicz, T. R. (2017). Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction. Toxicology and Applied Pharmacology, 335, 1-5. https://doi.org/10.1016/j.taap.2017.09.016
Stone, V., Johnston, H., & Clift, M. J. D. (2007). Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Transactions on Nanobioscience, 6(4), 331-340. https://doi.org/10.1109/tnb.2007.909005
Stuart, B. O. (1984). Deposition and clearance of inhaled particles. Environmental Health Perspectives, 55, 369-390. https://doi.org/10.1289/ehp.8455369
Su, W.-C., Chen, Y., & Xi, J. (2020). Estimation of the deposition of ultrafine 3D printing particles in human tracheobronchial airways. Journal of Aerosol Science, 149, 105605. https://doi.org/10.1016/j.jaerosci.2020.105605
Tomczak, A., Miller, A. B., Weichenthal, S. A., To, T., Wall, C., van Donkelaar, A., Martin, R. V., Crouse, D. L., & Villeneuve, P. J. (2016). Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. International Journal of Cancer, 139(9), 1958-1966. https://doi.org/10.1002/ijc.30255
Turner, M. C., Krewski, D., Pope, C. A. 3rd, Chen, Y., Gapstur, S. M., & Thun, M. J. (2011). Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American Journal of Respiratory and Critical Care Medicine, 184(12), 1374-1381. https://doi.org/10.1164/rccm.201106-1011OC
U.S. EPA. (2023). National Ambient air Quality Standards (NAAQS) for PM. National Ambient Air Quality Standards (NAAQS) for PM | US EPA.
Vallabani, N. V. S., Alijagic, A., Persson, A., Odnevall, I., Särndahl, E., & Karlsson, H. L. (2022). Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models, comparative study. Toxicology, 467, 153100. https://doi.org/10.1016/j.tox.2022.153100
Vermeulen, R., Silverman, D. T., Garshick, E., Vlaanderen, J., Portengen, L., & Steenland, K. (2014). Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environmental Health Perspectives, 122(2), 172-177. https://doi.org/10.1289/ehp.1306880
Weichenthal, S., Bai, L., Hatzopoulou, M., Van Ryswyk, K., Kwong, J. C., Jerrett, M., van Donkelaar, A., Martin, R. V., Burnett, R. T., Lu, H., & Chen, H. (2017). Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: A cohort study. Environmental Health, 16, 64. https://doi.org/10.1186/s12940-017-0276-7
Wojtyła, S., Klama, P., Śpiewak, K., & Baran, T. (2019). 3D printer as a potential source of indoor air pollution. International Journal of Environmental Science and Technology, 17(1), 207-218. https://doi.org/10.1007/s13762-019-02444-x
World Health Organization (WHO). (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/107823
Wright, C. (2022). Dosimetric and toxicological analysis of 3D printer emitted particles. Final report. Chemical Insights Research Institute. Chemical-Insights_3D-Toxicity-Report_final.pdf (chemicalinsights.org).
Wylie, A. G., & Korchevskiy, A. A. (2023). Dimensions of elongate mineral particles and cancer: A review. Environmental Research, 230, 114688. https://doi.org/10.1016/j.envres.2022.114688
Yee, M. S.-L., Hii, L.-W., Looi, C. K., Lim, W.-M., Wong, S. F., Kok, Y. Y., Tan, B.-K., Wong, C.-Y., & Leong, C.-O. (2021). Impact of microplastics and nanoplastics on human health. Nanomaterials (Basel), 11(2), 496. https://doi.org/10.3390/nano11020496
Youn, J.-S., Seo, J.-W., Han, S., & Jeon, K.-J. (2019). Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: From emission to inhalation. RSC Advances, 9(34), 19606-19612. https://doi.org/10.1039/C9RA03248G
Zhang, Q., Pardo, M., Rudich, Y., Kaplan-Ashiri, I., Wong, J. P. S., Davis, A. Y., Black, M. S., & Weber, R. J. (2019). Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environmental Science & Technology, 53(20), 12054-12061. https://doi.org/10.1021/acs.est.9b04168
Zhang, Q., Weber, R. J., Luxton, T. P., Peloquin, D. M., Baumann, E. J., & Black, M. S. (2023). Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. Science of the Total Environment, 860, 160512. https://doi.org/10.1016/j.scitotenv.2022.160512
Zolnik, B. S., González-Fernández, A., Sadrieh, N., & Dobrovolskaia, M. A. (2010). Minireview: Nanoparticles and the immune system. Endocrinology, 151(2), 58-465. https://doi.org/10.1210/en.2009-1082

Auteurs

Andrey A Korchevskiy (AA)

Chemistry & Industrial Hygiene, Inc., Arvada, Colorado, USA.

W Cary Hill (WC)

ITA International, LLC, Blacksburg, Virginia, USA.

Matthew Hull (M)

Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA.

Arseniy Korchevskiy (A)

Colorado School of Mines, Golden, Colorado, USA.

Classifications MeSH