Bone mineral density differences between femurs of scoliotic patients undergoing quantitative computed tomography analysis.

BMD Osteoporosis QCT Scoliosis T-score

Journal

European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
ISSN: 1432-0932
Titre abrégé: Eur Spine J
Pays: Germany
ID NLM: 9301980

Informations de publication

Date de publication:
11 Nov 2023
Historique:
received: 12 08 2023
accepted: 21 10 2023
revised: 12 08 2023
medline: 11 11 2023
pubmed: 11 11 2023
entrez: 11 11 2023
Statut: aheadofprint

Résumé

Scoliosis is a cause of loading imbalance between the lower limbs, which can result in BMD differences between the two femurs. We investigated the discrepancy in BMD values assessed by quantitative computed tomography (QCT) between femurs in patients with and without scoliosis, also assessing if this difference can be related to spine convexity. Abdominal CT examinations were retrospectively reviewed. An ''asynchronous'' calibration of CT images was performed to obtain BMD values from QCT. Scoliosis was evaluated on the antero-posterior CT localizer to calculate the Cobb angle. Differences between aBMD and vBMD of femurs were assessed in both scoliotic and non-scoliotic subjects. Final study cohort consisted of 263 subjects, 225 of them without scoliosis (85.6%) and 38 with scoliosis (14.4%). No significant differences were found in the general population without scoliosis, except for vBMD at the neck. Comparison of femurs in scoliotic patients showed statistically significant differences at neck aBMD -0.028 g/cm QCT analysis demonstrated a difference in both areal and volumetric BMD between the two femurs of scoliotic patients, in relation to the side of the scoliotic curve. If these data will be confirmed by larger studies, bilateral femoral DXA acquisition may be proposed for these patients.

Identifiants

pubmed: 37950828
doi: 10.1007/s00586-023-08020-9
pii: 10.1007/s00586-023-08020-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5
doi: 10.1007/s00198-018-4704-5 pubmed: 30324412
Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif Tissue Int 104:235–238
doi: 10.1007/s00223-018-00512-x pubmed: 30796490 pmcid: 6422308
Hamdy R, Kiebzak GM, Seier E, Watts NB (2006) The prevalence of significant left-right differences in hip bone mineral density. Osteoporos Int 17:1772–1780. https://doi.org/10.1007/s00198-006-0192-0
doi: 10.1007/s00198-006-0192-0 pubmed: 17019523
Mazess RB (2000) Measuring both femora? [1]. J Clin Densitom 3:299
doi: 10.1016/S1094-6950(06)60128-5 pubmed: 11203467
Karjalainen P, Alhava EM (1977) Bone mineral content of the forearm in a healthy population. Acta Oncol (Madr) 16:199–208. https://doi.org/10.3109/02841867709134313
doi: 10.3109/02841867709134313
Rao AD, Reddy S, Rao DS (2000) Is there a difference between right and left femoral bone density? J Clin Densitom 3:57–61. https://doi.org/10.1385/JCD:3:1:057
doi: 10.1385/JCD:3:1:057 pubmed: 10745302
Petley GW, Taylor PA, Murrills AJ et al (2000) An investigation of the diagnostic value of bilateral femoral neck bone mineral density measurements. Osteoporos Int 11:675–679. https://doi.org/10.1007/s001980070065
doi: 10.1007/s001980070065 pubmed: 11095170
Lewiecki EM, Gordon CM, Baim S et al (2008) International society for clinical densitometry 2007 adult and pediatric official positions. Bone 43:1115–1121. https://doi.org/10.1016/j.bone.2008.08.106
doi: 10.1016/j.bone.2008.08.106 pubmed: 18793764
Yang Y, Han X, Chen Z et al (2023) Bone mineral density in children and young adults with idiopathic scoliosis: a systematic review and meta-analysis. Eur Spine J 32:149–166. https://doi.org/10.1007/S00586-022-07463-W
doi: 10.1007/S00586-022-07463-W pubmed: 36450863
Gupta A, Cha T, Schwab J et al (2021) Osteoporosis is under recognized and undertreated in adult spinal deformity patients. J spine Surg (Hong Kong) 7:1–7. https://doi.org/10.21037/JSS-20-668
Šarčević Z (2010) Scoliosis: muscle imbalance and treatment. Br J Sports Med 44:i16–i16. https://doi.org/10.1136/BJSM.2010.078725.49
doi: 10.1136/BJSM.2010.078725.49
Godzik J, Frames CW, Smith Hussain V et al (2020) Postural stability and dynamic balance in adult spinal deformity: prospective pilot study. World Neurosurg 141:e783–e791. https://doi.org/10.1016/j.wneu.2020.06.010
doi: 10.1016/j.wneu.2020.06.010 pubmed: 32535057
Hans D, Biot B, Schott AM, Meunier PJ (1996) No diffuse osteoporosis in lumbar scoliosis but lower femoral bone density on the convexity. Bone 18:15–17. https://doi.org/10.1016/8756-3282(95)00421-1
doi: 10.1016/8756-3282(95)00421-1 pubmed: 8717531
Bandirali M, Messina C, Di Leo G et al (2013) Bone mineral density differences between femurs of scoliotic patients undergoing dual-energy X-ray absorptiometry. Clin Radiol 68. https://doi.org/10.1016/j.crad.2013.03.028
Adams JE (2013) Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 9:28–42. https://doi.org/10.1038/nrendo.2012.217
doi: 10.1038/nrendo.2012.217 pubmed: 23232496
Khoo BCC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20:1539–1545. https://doi.org/10.1007/S00198-008-0820-Y
doi: 10.1007/S00198-008-0820-Y pubmed: 19107384
Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71:415–424. https://doi.org/10.1016/J.EJRAD.2009.04.074
doi: 10.1016/J.EJRAD.2009.04.074 pubmed: 19682815
Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948
doi: 10.1007/s00586-005-1053-9 pubmed: 16328223
Chen W, Khan Z, Freund J, Pocock N (2022) Dual hip DXA. Is it time to change standard protocol? J Clin Densitom 25:20–23. https://doi.org/10.1016/J.JOCD.2021.07.006
doi: 10.1016/J.JOCD.2021.07.006 pubmed: 34391641
Messina C, Usuelli FG, Maccario C et al (2020) Precision of bone mineral density measurements around total ankle replacement using dual energy x-ray absorptiometry. J Clin Densitom 23:656–663. https://doi.org/10.1016/j.jocd.2019.01.006
doi: 10.1016/j.jocd.2019.01.006 pubmed: 30792098

Auteurs

Domenico Albano (D)

Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di, 20122, Milan, Italy.

Stefano Fusco (S)

Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, 20122, Milan, Italy. stefano.fusco@unimi.it.

Laura Mascitti (L)

Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, 20122, Milan, Italy.

Giorgio Buccimazza (G)

UOC Radiodiagnostica, ASST Gaetano Pini - CTO, Milan, Italy.

Enrico Gallazzi (E)

UOC Patologia Vertebrale e Scoliosi, ASST G. Pini -CTO, Piazza Card Ferrari 1, Milan, Italy.

Salvatore Gitto (S)

IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy.

Luca Maria Sconfienza (LM)

IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy.

Carmelo Messina (C)

IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy.

Classifications MeSH